Purpose: Mutations in the receptor tyrosine kinase FLT3 are found in up to 30% of acute myelogenous leukemia patients and are associated with an inferior prognosis. In this study, we characterized critical tyrosine residues responsible for the transforming potential of active FLT3-receptor mutants and ligand-dependent activation of FLT3-WT.
Experimental Design: We performed a detailed structure-function analysis of putative autophosphorylation tyrosine residues in the FLT3-D835Y tyrosine kinase domain (TKD) mutant.
Mutations within the FLT3 gene are of growing importance for classification, risk assessment, and therapeutic targeting of acute myeloid leukemia (AML). We analyzed 656 AML patients for a recently described single-nucleotide polymorphism (SNP) in the third immunoglobulin-like domain of the extracellular region of FLT3. The FLT3 D324N variant was present in 42 cases (6.
View Article and Find Full Text PDFMutations in codon D816 of the KIT gene represent a recurrent genetic alteration in acute myeloid leukemia (AML). To clarify the biologic implication of activation loop mutations of the KIT gene, 1940 randomly selected AML patients were analyzed. In total, 33 (1.
View Article and Find Full Text PDFThe molecular characterization of leukemia has demonstrated that genetic alterations in the leukemic clone frequently fall into 2 classes, those affecting transcription factors (e.g., AML1-ETO) and mutations affecting genes involved in signal transduction (e.
View Article and Find Full Text PDFKIT exon 8 mutations are located in the extracellular portion of the receptor and are strongly associated with core-binding factor (CBF)-acute myeloid leukemia (AML). To characterize the functional role of these mutants, we analyzed the proproliferative and antiapoptotic potential of 3 KIT exon 8 mutations in interleukin 3 (IL-3)-dependent Ba/F3 cells. All KIT exon 8 mutants induced receptor hyperactivation in response to stem cell factor (SCF) stimulation in terms of proliferation and resistance toward apoptotic cell death.
View Article and Find Full Text PDFActivating mutations in the juxtamembrane domain (FLT3-length mutations, FLT3-LM) and in the protein tyrosine kinase domain (TKD) of FLT3 (FLT3-TKD) represent the most frequent genetic alterations in acute myeloid leukemia (AML) and define a molecular target for therapeutic interventions by protein tyrosine kinase (PTK) inhibitors. We could show that distinct activating FLT3-TKD mutations at position D835 mediate primary resistance to FLT3 PTK inhibitors in FLT3-transformed cell lines. In the presence of increasing concentrations of the FLT3 PTK inhibitor SU5614, we generated inhibitor resistant Ba/F3 FLT3-internal tandem duplication (ITD) cell lines (Ba/F3 FLT3-ITD-R1-R4) that were characterized by a 7- to 26-fold higher IC50 (concentration that inhibits 50%) to SU5614 compared with the parental ITD cells.
View Article and Find Full Text PDF