Automated identification of advanced chronic kidney disease (CKD ≥ III) and of no known kidney disease (NKD) can support both clinicians and researchers. We hypothesized that identification of CKD and NKD can be improved, by combining information from different electronic health record (EHR) resources, comprising laboratory values, discharge summaries and ICD-10 billing codes, compared to using each component alone. We included EHRs from 785 elderly multimorbid patients, hospitalized between 2010 and 2015, that were divided into a training and a test (n = 156) dataset.
View Article and Find Full Text PDFStud Health Technol Inform
June 2020
We here describe the evolution of annotation guidelines for major clinical named entities, namely Diagnosis, Findings and Symptoms, on a corpus of approximately 1,000 German discharge letters. Due to their intrinsic opaqueness and complexity, clinical annotation tasks require continuous guideline tuning, beginning from the initial definition of crucial entities and the subsequent iterative evolution of guidelines based on empirical evidence. We describe rationales for adaptation, with focus on several metrical criteria and task-centered clinical constraints.
View Article and Find Full Text PDFWe devised annotation guidelines for the de-identification of German clinical documents and assembled a corpus of 1,106 discharge summaries and transfer letters with 44K annotated protected health information (PHI) items. After three iteration rounds, our annotation team finally reached an inter-annotator agreement of 0.96 on the instance level and 0.
View Article and Find Full Text PDF