The prediction of fragment ion intensities and retention time of peptides has gained significant attention over the past few years. However, the progress shown in the accurate prediction of such properties focused primarily on unlabeled peptides. Tandem mass tags (TMT) are chemical peptide labels that are coupled to free amine groups usually after protein digestion to enable the multiplexed analysis of multiple samples in bottom-up mass spectrometry.
View Article and Find Full Text PDFBackground: Chronic infection with hepatitis C virus (HCV) is among the major causes of hepatic fibrosis, cirrhosis, as well as hepatocellular carcinoma (HCC), and it is associated with a significant risk of developing lymphoproliferative disorders. The rate of clinical disease progression is variable depending on multiple host and viral factors, including immune response.
Methods: To perform a comprehensive epitope mapping of anti-HCV antibodies in patients suffering from HCV-related liver or lymphoproliferative diseases, we analyzed clinical samples on a peptide microarray platform made of 5952 overlapping 15-mer synthetic peptides derived from the whole HCV proteome.
Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption.
View Article and Find Full Text PDFIn mass-spectrometry-based proteomics, the identification and quantification of peptides and proteins heavily rely on sequence database searching or spectral library matching. The lack of accurate predictive models for fragment ion intensities impairs the realization of the full potential of these approaches. Here, we extended the ProteomeTools synthetic peptide library to 550,000 tryptic peptides and 21 million high-quality tandem mass spectra.
View Article and Find Full Text PDFThe analysis of the post-translational modification (PTM) state of proteins using mass spectrometry-based bottom-up proteomic workflows has evolved into a powerful tool for the study of cellular regulatory events that are not directly encoded at the genome level. Besides frequently detected modifications such as phosphorylation, acetylation and ubiquitination, many low abundant or less frequently detected PTMs are known or postulated to serve important regulatory functions. To more broadly understand the LC-MS/MS characteristics of PTMs, we synthesized and analyzed ∼5,000 peptides representing 21 different naturally occurring modifications of lysine, arginine, proline and tyrosine side chains and their unmodified counterparts.
View Article and Find Full Text PDFBeyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored.
View Article and Find Full Text PDFWe describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography-tandem mass spectrometry analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the utility of these data in several applications. The resource (available at http://www.
View Article and Find Full Text PDFThe examination of antibody responses in human immunodeficiency virus (HIV)-1-infected individuals in the setting of antiretroviral treatment (ART) interruption can provide insight into the evolution of antibody responses during viral rebound. In this study, we assessed antibody responses in 20 subjects in AIDS Clinical Trials Group A5187, wherein subjects were treated with antiretroviral therapy during acute/early HIV-1 infection, underwent analytic treatment interruption, and subsequently demonstrated viral rebound. Our data suggest that early initiation of ART arrests the maturation of HIV-1-specific antibody responses, preventing epitope diversification of antibody binding and the development of functional neutralizing capacity.
View Article and Find Full Text PDFMemory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4(+) T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation.
View Article and Find Full Text PDFAlternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we show using a combination of Jurkat T cells, human primary T cells, and ex vivo naïve and effector virus-specific T cells isolated after influenza A virus infection that SC35 phosphorylation is induced in response to stimulatory signals.
View Article and Find Full Text PDFPeptide microarrays are ideal tools for a variety of applications ranging from epitope mapping to immune monitoring. Here we present a method for high-throughput screening of biological samples using only standard microtiter plate equipment. Parallel incubation of a large number of samples with a small library of peptides is enabled by printing multiple identical mini-arrays on one microarray slide and further combining four slides to yield an incubation frame possessing the dimensions of a 96-well microtiter plate.
View Article and Find Full Text PDFAn effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database.
View Article and Find Full Text PDFBackground: Anisakiasis is a re-emerging global disease caused by consumption of raw or lightly cooked fish contaminated with L3 Anisakis larvae. This zoonotic disease is characterized by severe gastrointestinal and/or allergic symptoms which may misdiagnosed as appendicitis, gastric ulcer or other food allergies. The Anisakis allergen Ani s 5 is a protein belonging to the SXP/RAL-2 family; it is detected exclusively in nematodes.
View Article and Find Full Text PDFThe onset of autoimmune diseases is proposed to involve binding promiscuity of antibodies (Abs) and T-cells, an often reported yet poorly understood phenomenon. Here, we attempt to approach two questions: first, is binding promiscuity a general feature of monoclonal antibodies (mAbs) and second, what is the molecular basis for polyspecificity? To this end, the anti-cholera toxin peptide 3 (CTP3) mAb TE33 was investigated for polyspecific binding properties. Screening of phage display libraries identified two epitope-unrelated peptides that specifically bound TE33 with affinities similar to or 100-fold higher than the wild-type epitope.
View Article and Find Full Text PDFSince numerous tumor cells overexpress the vasoactive intestinal peptide (VIP) receptor subtype 1 (VPAC(1)), VIP-dye conjugates would be useful as contrast agents for in vivo imaging. However, proteolytic degradation of VIP in vivo limits their diagnostic use and highlights the need for structurally optimized VIP derivatives with improved pharmacokinetics. Here, we applied parallel nano-synthesis of cleavable peptides on cellulose membranes to perform a complete VIP substitutional analysis.
View Article and Find Full Text PDF