Publications by authors named "Tobias Hollerer"

By situating computer-generated content in the physical world, mobile augmented reality (AR) can support many tasks that involve effective search and inspection of physical environments. Currently, there is limited information regarding the viability of using AR in realistic wide-area outdoor environments and how AR experiences affect human behavior in these environments. Here, we conducted a wide-area outdoor AR user study ($n=48$) using a commercially available AR headset (Microsoft Hololens 2) to compare (1) user interactions with physical and virtual objects in the environment (2) the effects of different lighting conditions on user behavior and AR experience and (3) the impact of varying cognitive load on AR task performance.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are often used as an input modality for Brain Computer Interfaces (BCIs). While EEG signals can be beneficial for numerous types of interaction scenarios in the real world, high levels of noise limits their usage to strictly noise-controlled environments such as a research laboratory. Even in a controlled environment, EEG is susceptible to noise, particularly from user motion, making it highly challenging to use EEG, and consequently BCI, as a ubiquitous user interaction modality.

View Article and Find Full Text PDF

We conducted a fundamental user study to assess potential benefits of AR technology for immersive vocabulary learning. With the idea that AR systems will soon be able to label real-world objects in any language in real time, our within-subjects lab-based study explores the effect of such an AR vocabulary prompter on participants learning nouns in an unfamiliar foreign language, compared to a traditional flashcard-based learning approach. Our results show that the immersive AR experience of learning with virtual labels on real-world objects is both more effective and more enjoyable for the majority of participants, compared to flashcards.

View Article and Find Full Text PDF

In this paper, we investigate factors and issues related to human locomotion behavior and proxemics in the presence of a real or virtual human in augmented reality (AR). First, we discuss a unique issue with current-state optical see-through head-mounted displays, namely the mismatch between a small augmented visual field and a large unaugmented periphery, and its potential impact on locomotion behavior in close proximity of virtual content. We discuss a potential simple solution based on restricting the field of view to the central region, and we present the results of a controlled human-subject study.

View Article and Find Full Text PDF

We present a new approach to rendering a geometrically-correct user-perspective view for a magic lens interface, based on leveraging the gradients in the real world scene. Our approach couples a recent gradient-domain image-based rendering method with a novel semi-dense stereo matching algorithm. Our stereo algorithm borrows ideas from PatchMatch, and adapts them to semi-dense stereo.

View Article and Find Full Text PDF

Objective: We investigated how increases in task-relevant information affect human decision-making performance, situation awareness (SA), and trust in a simulated command-and-control (C2) environment.

Background: Increased information is often associated with an improvement of SA and decision-making performance in networked organizations. However, previous research suggests that increasing information without considering the task relevance and the presentation can impair performance.

View Article and Find Full Text PDF

We present the design, implementation and evaluation of iVisDesigner, a web-based system that enables users to design information visualizations for complex datasets interactively, without the need for textual programming. Our system achieves high interactive expressiveness through conceptual modularity, covering a broad information visualization design space. iVisDesigner supports the interactive design of interactive visualizations, such as provisioning for responsive graph layouts and different types of brushing and linking interactions.

View Article and Find Full Text PDF

Motivation: In addition to being involved in retinal vascular growth, astrocytes play an important role in diseases and injuries, such as glaucomatous neuro-degeneration and retinal detachment. Studying astrocytes, their morphological cell characteristics and their spatial relationships to the surrounding vasculature in the retina may elucidate their role in these conditions.

Results: Our results show that in normal healthy retinas, the distribution of observed astrocyte cells does not follow a uniform distribution.

View Article and Find Full Text PDF

We present an approach and prototype implementation to initialization-free real-time tracking and mapping that supports any type of camera motion in 3D environments, that is, parallax-inducing as well as rotation-only motions. Our approach effectively behaves like a keyframe-based Simultaneous Localization and Mapping system or a panorama tracking and mapping system, depending on the camera movement. It seamlessly switches between the two modes and is thus able to track and map through arbitrary sequences of parallax-inducing and rotation-only camera movements.

View Article and Find Full Text PDF

The AlloSphere provides multiuser spatial interaction through a curved surround screen and surround sound. Two projects illustrate how researchers employed the AlloSphere to investigate the combined use of personal-device displays and the shared display. Another two projects combined multiuser interaction with multiagent systems.

View Article and Find Full Text PDF

In this paper, we investigate the validity of Mixed Reality (MR) Simulation by conducting an experiment studying the effects of the visual realism of the simulated environment on various search tasks in Augmented Reality (AR). MR Simulation is a practical approach to conducting controlled and repeatable user experiments in MR, including AR. This approach uses a high-fidelity Virtual Reality (VR) display system to simulate a wide range of equal or lower fidelity displays from the MR continuum, for the express purpose of conducting user experiments.

View Article and Find Full Text PDF

In this paper we present a new technique and prototype graph visualization system, stereoscopic highlighting, to help answer accessibility and adjacency queries when interacting with a node-link diagram. Our technique utilizes stereoscopic depth to highlight regions of interest in a 2D graph by projecting these parts onto a plane closer to the viewpoint of the user. This technique aims to isolate and magnify specific portions of the graph that need to be explored in detail without resorting to other highlighting techniques like color or motion, which can then be reserved to encode other data attributes.

View Article and Find Full Text PDF

The acquisition of surround-view panoramas using a single hand-held or head-worn camera relies on robust real-time camera orientation tracking and relocalization. This paper presents robust methodology and evaluation for camera orientation relocalization, using virtual keyframes for online environment map construction. In the case of tracking loss, incoming camera frames are matched against known-orientation keyframes to re-estimate camera orientation.

View Article and Find Full Text PDF

While a number of information visualization software frameworks exist, creating new visualizations, especially those that involve novel visualization metaphors, interaction techniques, data analysis strategies, and specialized rendering algorithms, is still often a difficult process. To facilitate the creation of novel visualizations we present a new software framework, behaviorism, which provides a wide range of flexibility when working with dynamic information on visual, temporal, and ontological levels, but at the same time providing appropriate abstractions which allow developers to create prototypes quickly which can then easily be turned into robust systems. The core of the framework is a set of three interconnected graphs, each with associated operators: a scene graph for high-performance 3D rendering, a data graph for different layers of semantically linked heterogeneous data, and a timing graph for sophisticated control of scheduling, interaction, and animation.

View Article and Find Full Text PDF

We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow.

View Article and Find Full Text PDF

We present an immaterial display that uses a generalized form of depth-fused 3D (DFD) rendering to create unencumbered 3D visuals. To accomplish this result, we demonstrate a DFD display simulator that extends the established depth-fused 3D principle by using screens in arbitrary configurations and from arbitrary viewpoints. The feasibility of the generalized DFD effect is established with a user study using the simulator.

View Article and Find Full Text PDF

Anywhere Augmentation pursues the goal of lowering the initial investment of time and money necessary to participate in mixed reality work, bridging the gap between researchers in the field and regular computer users. Our paper contributes to this goal by introducing the GroundCam, a cheap tracking modality with no significant setup necessary. By itself, the GroundCam provides high frequency, high resolution relative position information similar to an inertial navigation system, but with significantly less drift.

View Article and Find Full Text PDF