Publications by authors named "Tobias Gustafsson-Hedberg"

Tissue engineering is a promising methodology to produce advanced therapy medicinal products (ATMPs). We have developed personalized tissue engineered veins (P-TEV) as an alternative to autologous or synthetic vascular grafts utilized in reconstructive vein surgery. Our hypothesis is that individualization through reconditioning of a decellularized allogenic graft with autologous blood will prime the tissue for efficient recellularization, protect the graft from thrombosis, and decrease the risk of rejection.

View Article and Find Full Text PDF

Patients with cardiovascular disease often need replacement or bypass of a diseased blood vessel. With disadvantages of both autologous blood vessels and synthetic grafts, tissue engineering is emerging as a promising alternative of advanced therapy medicinal products for individualized blood vessels. By reconditioning of a decellularized blood vessel with the recipient's own peripheral blood, we have been able to prevent rejection without using immunosuppressants and prime grafts for efficient recellularization Recently, decellularized veins reconditioned with autologous peripheral blood were shown to be safe and functional in a porcine study as a potential alternative for vein grafting.

View Article and Find Full Text PDF

Personalized tissue engineered vascular grafts are a promising advanced therapy medicinal product alternative to autologous or synthetic vascular grafts utilized in blood vessel bypass or replacement surgery. We hypothesized that an individualized tissue engineered vein (P-TEV) would make the body recognize the transplanted blood vessel as autologous, decrease the risk of rejection and thereby avoid lifelong treatment with immune suppressant medication as is standard with allogenic organ transplantation. To individualize blood vessels, we decellularized vena cava from six deceased donor pigs and tested them for cellular removal and histological integrity.

View Article and Find Full Text PDF

There is an urgent need for new adjuvants that are effective with mucosally administered vaccines. Cholera toxin (CT) is the most powerful known mucosal adjuvant but is much too toxic for human use. In an effort to develop a useful mucosal adjuvant we have generated a novel non-toxic mutant CT molecule that retains much of the adjuvant activity of native CT.

View Article and Find Full Text PDF

Development of long-lived humoral immunity is dependent on CXCR5-expressing T follicular helper (Tfh) cells, which develop concomitantly to effector Th cells that support cellular immunity. Conventional dendritic cells (cDCs) are critical APCs for initial priming of naive CD4(+) T cells but, importantly, also provide accessory signals that govern effector Th cell commitment. To define the accessory role of cDCs during the concurrent development of Tfh and effector Th1 cells, we performed high-dose Ag immunization in conjunction with the Th1-biased adjuvant polyinosinic:polycytidylic acid (pI:C).

View Article and Find Full Text PDF