Background: General psychiatrists' practice standards vary regarding when to implement transcranial magnetic stimulation (TMS) for care of patients with major depressive disorder (MDD). Furthermore, few studies have examined real-world utilization and clinical outcomes of TMS. This study analyzed data from a large, multi-site psychiatric practice to evaluate utilization and outcomes of TMS as well as usual care (UC) for patients with MDD.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
May 2023
Background: Alterations in the brain's reward system may underlie motivation and pleasure deficits in schizophrenia (SZ). Neuro-oscillatory desynchronization in the alpha band is thought to direct resource allocation away from the internal state, to prioritize processing salient environmental events, including reward feedback. We hypothesized reduced reward-related alpha event-related desynchronization (ERD) in SZ, consistent with less externally focused processing during reward feedback.
View Article and Find Full Text PDFRationale: Ketamine is a novel, rapid-acting antidepressant for treatment refractory depression (TRD); however, clinical durability is poor and treatment response trajectories vary. Little is known about which patient characteristics predict faster or more durable ketamine responses. Ketamine's antidepressant mechanism may involve modulation of glutamatergic signaling and long-term potentiation (LTP); these neuroplasticity pathways are also attenuated with older age.
View Article and Find Full Text PDFBehavioral tasks involving auditory cues activate inhibitory neurons within auditory cortex, leading to a reduction in the amplitude of auditory evoked response potentials (ERPs). One hypothesis is that this process, termed "task engagement," may enable context-dependent behaviors. Here we set out to determine (1) whether the medial prefrontal cortex (mPFC) plays a role in task engagement and (2) how task engagement relates to the context-dependent processing of auditory cues in male and female mice performing a decision-making task that can be guided by either auditory or visual cues.
View Article and Find Full Text PDFGenetic, pharmacologic, and behavioral manipulations have long been powerful tools for generating rodent models to study the neural substrates underlying psychiatric disease. Recent advances in the use of optogenetics in awake behaving rodents has added an additional valuable methodology to this experimental toolkit. Here, we review several recent studies that leverage optogenetic technologies to elucidate neural mechanisms possibly related to depression, anxiety, and obsessive-compulsive disorder.
View Article and Find Full Text PDFDuring social interactions, an individual's behavior is largely governed by the subset of signals emitted by others. Discrimination of "self" from "other" regulates the territorial urine countermarking behavior of mice. To identify the cues for this social discrimination and understand how they are interpreted, we designed an olfactory-dependent countermarking assay.
View Article and Find Full Text PDFSpecies-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity.
View Article and Find Full Text PDFMice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons.
View Article and Find Full Text PDFPheromone communication is a two-component system: signaling pheromones and receiving sensory neurons. Currently, pheromones remain enigmatic bioactive compounds, as only a few have been identified, but classical bioassays have suggested that they are nonvolatile, activate vomeronasal sensory neurons, and regulate innate social behaviors and neuroendocrine release. Recent discoveries of potential pheromones reveal that they may be more structurally and functionally diverse than previously defined.
View Article and Find Full Text PDF