Publications by authors named "Tobias Eberle"

Squeezed vacuum states constitute a particularly useful resource in quantum information as well as in quantum metrology. The frequency conversion of these states is important to provide the bridge between different wavelengths within a sequence of downstream applications and also to provide a way for squeezed-state generation at so-far inaccessible wavelengths. Here we demonstrate the external quantum up-conversion of carrier-light-free squeezed vacuum states for the first time.

View Article and Find Full Text PDF

Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties' local systems.

View Article and Find Full Text PDF

Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the total amount of optical loss to the entangled beams needs to be small.

View Article and Find Full Text PDF

The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively.

View Article and Find Full Text PDF

Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal.

View Article and Find Full Text PDF

Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz.

View Article and Find Full Text PDF

We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.

View Article and Find Full Text PDF

Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.

View Article and Find Full Text PDF

The injection of squeezed light can be used to improve the sensitivity of an interferometer beyond the limit imposed by the zero-point fluctuation of the electromagnetic field. Here, we report on the realization of such a quantum-enhanced interferometer with a fiber-based Sagnac topology. Continuous wave squeezed states at 1550 nm with a noise reduction of 6.

View Article and Find Full Text PDF

We report on the generation of cw squeezed vacuum states of light at the telecommunication wavelength of 1550 nm. The squeezed vacuum states were produced by type I optical parametric amplification in a standing-wave cavity built around a periodically poled potassium titanyl phosphate crystal. A nonclassical noise reduction of 5.

View Article and Find Full Text PDF