Publications by authors named "Tobias Donner"

Article Synopsis
  • Some decisions we make rely on gathering information from our surroundings, but this can be tricky, especially for people who might have psychosis.
  • Researchers found that people who are more likely to experience psychosis have a harder time adjusting their beliefs based on new evidence, especially when changes happen later in decision-making.
  • Also, these individuals showed smaller pupil responses, which suggests that their brains might not be processing evidence as effectively compared to those who don’t experience psychosis.
View Article and Find Full Text PDF

Decision-makers often process new evidence selectively, depending on their current beliefs about the world. We asked whether such confirmation biases result from biases in the encoding of sensory evidence in the brain, or alternatively in the utilization of encoded evidence for behavior. Human participants estimated the source of a sequence of visual-spatial evidence samples while we measured cortical population activity with magnetoencephalography (MEG).

View Article and Find Full Text PDF

Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuropsychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral modeling only.

View Article and Find Full Text PDF

The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors.

View Article and Find Full Text PDF

Engineering pairs of massive particles that are simultaneously correlated in their external and internal degrees of freedom is a major challenge, yet essential for advancing fundamental tests of physics and quantum technologies. In this Letter, we experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes. This mechanism couples atoms from a degenerate Bose gas via a superradiant photon-exchange process in an optical cavity, producing pairs via a single channel or two discernible channels.

View Article and Find Full Text PDF

Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task.

View Article and Find Full Text PDF

Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively triggers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine).

View Article and Find Full Text PDF

We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity as described by the open Tavis-Cummings model. In this hybrid light-matter system, the interplay between coherent and dissipative processes leads to superradiant pulses with a buildup of strong correlations, even for systems comprising hundreds to thousands of particles. A central feature of the mean-field dynamics is a self-reversal of two spin degrees of freedom due to an underlying time-reversal symmetry, which is broken by quantum fluctuations.

View Article and Find Full Text PDF

Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions.

View Article and Find Full Text PDF

Humans and non-human primates can flexibly switch between different arbitrary mappings from sensation to action to solve a cognitive task. It has remained unknown how the brain implements such flexible sensory-motor mapping rules. Here, we uncovered a dynamic reconfiguration of task-specific correlated variability between sensory and motor brain regions.

View Article and Find Full Text PDF

Humans and other animals tend to repeat or alternate their previous choices, even when judging sensory stimuli presented in a random sequence. It is unclear if and how sensory, associative, and motor cortical circuits produce these idiosyncratic behavioral biases. Here, we combined behavioral modeling of a visual perceptual decision with magnetoencephalographic (MEG) analyses of neural dynamics, across multiple regions of the human cerebral cortex.

View Article and Find Full Text PDF

Dopa-responsive dystonia (DRD) is caused by an impaired dopamine biosynthesis due to a GTP-cyclohydrolase-1 (GCH1) deficiency, resulting in a combination of dystonia and parkinsonism. However, the effect of GCH1 mutations and levodopa treatment on motor control beyond simple movements, such as timing, action preparation and feedback processing, have not been investigated so far. In an active time estimation task with trial-by-trial feedback, participants indicated a target interval (1200 ms) by a motor response.

View Article and Find Full Text PDF

Pumps are transport mechanisms in which direct currents result from a cyclic evolution of the potential. As Thouless showed, the pumping process can have topological origins, when considering the motion of quantum particles in spatially and temporally periodic potentials. However, the periodic evolution that drives these pumps has always been assumed to be imparted from outside, as has been the case in the experimental systems studied so far.

View Article and Find Full Text PDF

Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one.

View Article and Find Full Text PDF

We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting.

View Article and Find Full Text PDF

Fluctuations in arousal, controlled by subcortical neuromodulatory systems, continuously shape cortical state, with profound consequences for information processing. Yet, how arousal signals influence cortical population activity in detail has so far only been characterized for a few selected brain regions. Traditional accounts conceptualize arousal as a homogeneous modulator of neural population activity across the cerebral cortex.

View Article and Find Full Text PDF

While functional magnetic resonance imaging (fMRI) at ultra-high field (7 T) promises a general increase in sensitivity compared to lower field strengths, the benefits may be most pronounced for specific applications. The current study aimed to evaluate the relative benefit of 7 over 3 T fMRI for the assessment of responses evoked in different brain regions by a well-controlled cognitive task. At 3 and 7 T, the same participants made challenging perceptual decisions about visual motion combined with monetary rewards for correct choices.

View Article and Find Full Text PDF

Influential theories postulate distinct roles of catecholamines and acetylcholine in cognition and behavior. However, previous physiological work reported similar effects of these neuromodulators on the response properties (specifically, the gain) of individual cortical neurons. Here, we show a double dissociation between the effects of catecholamines and acetylcholine at the level of large-scale interactions between cortical areas in humans.

View Article and Find Full Text PDF

Many decisions under uncertainty entail the temporal accumulation of evidence that informs about the state of the environment. When environments are subject to hidden changes in their state, maximizing accuracy and reward requires non-linear accumulation of evidence. How this adaptive, non-linear computation is realized in the brain is unknown.

View Article and Find Full Text PDF

Central to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain's arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the positive slow wave component of event-related potentials reflect rapid changes in the arousal level of the brain.

View Article and Find Full Text PDF

Many decisions result from the accumulation of decision-relevant information (evidence) over time. Even when maximizing decision accuracy requires weighting all the evidence equally, decision-makers often give stronger weight to evidence occurring early or late in the evidence stream. Here, we show changes in such temporal biases within participants as a function of intermittent judgments about parts of the evidence stream.

View Article and Find Full Text PDF

Human observers can reliably report their confidence in the choices they make. An influential framework conceptualizes decision confidence as the probability of a decision being correct, given the choice made and the evidence on which it was based. This framework accounts for three diagnostic signatures of human confidence reports, including an opposite dependence of confidence on evidence strength for correct and error trials.

View Article and Find Full Text PDF

Perceptual decisions entail the accumulation of sensory evidence for a particular choice towards an action plan. An influential framework holds that sensory cortical areas encode the instantaneous sensory evidence and downstream, action-related regions accumulate this evidence. The large-scale distribution of this computation across the cerebral cortex has remained largely elusive.

View Article and Find Full Text PDF

Decisions are often made by accumulating ambiguous evidence over time. The brain's arousal systems are activated during such decisions. In previous work in humans, we found that evoked responses of arousal systems during decisions are reported by rapid dilations of the pupil and track a suppression of biases in the accumulation of decision-relevant evidence (de Gee et al.

View Article and Find Full Text PDF

Learning from successes and failures often improves the quality of subsequent decisions. Past outcomes, however, should not influence purely perceptual decisions after task acquisition is complete since these are designed so that only sensory evidence determines the correct choice. Yet, numerous studies report that outcomes can bias perceptual decisions, causing spurious changes in choice behavior without improving accuracy.

View Article and Find Full Text PDF