Publications by authors named "Tobias D Henning"

Objective: To evaluate the utility of nerve magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and muscle MRI multi-echo Dixon for assessing lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS).

Methods: In this prospective observational cohort study, 14 patients with ALS and 13 healthy controls underwent a multiparametric MRI protocol, including DTI of the sciatic nerve and assessment of muscle proton density fat fraction of the biceps femoris and the quadriceps femoris muscles by a multi-echo Dixon sequence.

Results: In ALS patients, mean fractional anisotropy values of the sciatic nerve were significantly lower than those of healthy controls.

View Article and Find Full Text PDF

Purpose: Longitudinal imaging studies are important in the translational process of stem cell-based therapies. Small animal imaging models are widely available and practical but insufficiently depict important morphologic detail. In contrary, large animal models are logistically challenging and costly but offer greater imaging quality.

View Article and Find Full Text PDF

Background: Diagnosis and disease monitoring of non-systemic vasculitic neuropathy (NSVN) are based on electrophysiological and clinical measures. However, these methods are insensitive to detect subtle differences of axonal injury. We here assessed the utility of a multiparametric MRI protocol to quantify axonal injury and neurogenic muscle damage in NSVN.

View Article and Find Full Text PDF

Objective: To evaluate the utility of nerve diffusion tensor imaging (DTI), nerve cross-sectional area, and muscle magnetic resonance imaging (MRI) multiecho Dixon for assessing proximal nerve injury in chronic inflammatory demyelinating polyneuropathy (CIDP).

Methods: In this prospective observational cohort study, 11 patients with CIDP and 11 healthy controls underwent a multiparametric MRI protocol with DTI of the sciatic nerve and assessment of muscle proton-density fat fraction of the biceps femoris and the quadriceps femoris muscles by multiecho Dixon MRI. Patients were longitudinally evaluated by MRI, clinical examination, and nerve conduction studies at baseline and after 6 months.

View Article and Find Full Text PDF

The distribution of intramyocardially injected rabbit MSCs, labeled with the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo-cyanine-iodide (DiR) using hybrid Fluorescence Molecular Tomography-X-ray Computed Tomography (FMT-XCT) and Multispectral Optoacoustic Tomography (MSOT) imaging technologies, was investigated. Viability and induction of apoptosis of DiR labeled MSCs were assessed by XTT- and Caspase-3/-7-testing . 2 × 10, 2 × 10 and 2 × 10 MSCs labeled with 5 and 10 μg DiR/ml were injected into fresh frozen rabbit hearts.

View Article and Find Full Text PDF

Objectives: To assess labelling efficiency of rabbit mesenchymal stem cells (MSCs) using the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) and detection of labelled MSCs for osteochondral defect repair in a rabbit model using fluorescence molecular tomography-X-ray computed tomography (FMT-XCT).

Methods: MSCs were isolated from New Zealand White rabbits and labelled with DiR (1.25-20 μg/mL).

View Article and Find Full Text PDF

Objective: To assess the long-term outcome after endoscopic laser-assisted diverticulotomy.

Methods: The medical files of patients who underwent endoscopic Zenker's diverticulum (ZD) surgery were reviewed retrospectively. Patients were interviewed using a questionnaire which assessed symptoms, other relevant disorders and satisfaction after the surgery.

View Article and Find Full Text PDF

The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge.

View Article and Find Full Text PDF

Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration (1). Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions.

View Article and Find Full Text PDF

Objectives: The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI) in pig knee specimen.

Materials And Methods: Human mesenchymal stem cells (hMSCs) were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls.

View Article and Find Full Text PDF

Magnetic resonance (MR) imaging of superparamagnetic iron oxide (SPIO)-labeled stem cells offers a noninvasive evaluation of stem cell engraftment in host organs. Excessive cellular iron load from SPIO labeling, however, impairs stem cell differentiation. The purpose of this study was to magnetically label human embryonic stem cells (hESCs) via a reduced exposure protocol that maintains a significant MR signal and no significant impairment to cellular pluripotency or differentiation potential.

View Article and Find Full Text PDF

The purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and apoptotic MSCs. MSCs labeled with ferumoxide by simple incubation, protamine transfection, or Lipofectin transfection were evaluated with MRI and histopathology. Ferumoxide-labeled and unlabeled viable and apoptotic MSCs in osteochondral defects of rat knee joints were evaluated over 12 weeks with MRI.

View Article and Find Full Text PDF

Background: Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies.

View Article and Find Full Text PDF

Genetically modified natural killer (NK) cells that recognize tumor-associated surface antigens have recently shown promise as a novel approach for cancer immunotherapy. To determine NK cell therapy response early, a real-time, noninvasive method to quantify NK cell homing to the tumor is desirable. The purpose of this study was to evaluate if MR imaging could provide a noninvasive, in vivo diagnosis of NK cell accumulation in epithelial cell adhesion molecule (EpCAM)-positive prostate cancers in a rat xenograft model.

View Article and Find Full Text PDF

The purpose of this study was to compare viable and nonviable bilabeled mesenchymal stem cells (MSCs) in arthritic joints with magnetic resonance imaging (MRI) and optical imaging (OI). MSCs were labeled with ferucarbotran and DiD. MRI and OI of bilabeled cells were compared with controls.

View Article and Find Full Text PDF

This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs.

View Article and Find Full Text PDF

Objective: To record the MR imaging features of primary central nervous system lymphoma (PCNSL) and compare these features in monofocal and multifocal disease.

Materials And Methods: Twenty-one cases of monofocal disease were compared to five cases of multifocal disease. All patients were examined by non-enhanced and contrast-enhanced MRI.

View Article and Find Full Text PDF

Purpose: To assess the capability of the folate receptor (FR)-targeted ultrasmall superparamagnetic iron oxide (USPIO) P1133 to provide FR-specific enhancement of breast cancers on magnetic resonance (MR) images.

Materials And Methods: This study was approved by the institutional Animal Care and Use Committee. The FR-targeted contrast agent P1133 was incubated with various FR-positive human breast cancer cell lines, with and without free folic acid (FFA) as a competitor.

View Article and Find Full Text PDF

Purpose: This study aims to determine the effect of human mesenchymal stem cell (hMSC) labeling with the fluorescent dye DiD and the iron oxide nanoparticle ferucarbotran on chondrogenesis.

Procedures: hMSCs were labeled with DiD alone or with DiD and ferucarbotran (DiD/ferucarbotran). hMSCs underwent confocal microscopy, optical imaging (OI), and magnetic resonance (MR) imaging.

View Article and Find Full Text PDF

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have demonstrated the ability to improve myocardial function following transplantation into an ischemic heart; however, the functional benefits are transient possibly due to poor cell retention. A diagnostic technique that could visualize transplanted hESC-CMs could help to optimize stem cell delivery techniques. Thus, the purpose of this study was to develop a labeling technique for hESCs and hESC-CMs with the FDA-approved contrast agent indocyanine green (ICG) for optical imaging (OI).

View Article and Find Full Text PDF

The objective of this work is to establish an optical imaging technique that would enable monitoring of the integration of mesenchymal stem cells (MSC) in arthritic joints. Our approach is based on first developing a labeling technique of MSC with the fluorescent dye DiD followed by tracking the cell migration kinetics from the spatial distribution of the DiD fluorescence in optical images (OI). The experimental approach involves first the in vitro OI of MSC labeled with DiD accompanied by fluorescence microscopy measurements to establish localization of the signal within the cells.

View Article and Find Full Text PDF

Background: Long-term CT follow-up studies are required in pediatric patients who have received intraoperative radiation therapy (IORT) and external beam radiation therapy (EBRT) to assess vascular toxicities and to determine the exact complication rate.

Objective: To analyze with CT the effects of radiation therapy (RT) on the growth of the aorta in neuroblastoma patients.

Materials And Methods: Abdominal CT scans of 31 patients with intraabdominal neuroblastoma (stage II-IV), treated with RT (20 IORT+/-EBRT, 11 EBRT alone), were analyzed retrospectively.

View Article and Find Full Text PDF

For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with ferucarbotran using various protocols: cells were labeled with 100 microg Fe/ml for 4 and 18 h and additional samples were cultured for 6 or 12 days after the 18 h labeling.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) were labeled with Ferucarbotran by simple incubation and cultured for up to 14 d. Iron content was determined by spectrometry and the intracellular localization of the contrast agent uptake was studied by electron and confocal microscopy. At various time points after labeling, ranging from 1 to 14 d, samples with viable or lysed labeled hMSCs, as well as nonlabeled controls, underwent MRI.

View Article and Find Full Text PDF