A key goal of pertussis control is to protect infants too young to be vaccinated, the age group most vulnerable to this highly contagious respiratory infection. In the last decade, maternal immunization has been deployed in many countries, successfully reducing pertussis in this age group. Because of immunological blunting, however, this strategy may erode the effectiveness of primary vaccination at later ages.
View Article and Find Full Text PDFThe spread of SARS-CoV-2 has been geographically uneven. To understand the drivers of this spatial variation in SARS-CoV-2 transmission, in particular the role of stochasticity, we used the early stages of the SARS-CoV-2 invasion in Washington state as a case study. We analysed spatially-resolved COVID-19 epidemiological data using two distinct statistical analyses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Over the past two decades, multiple countries with high vaccine coverage have experienced resurgent outbreaks of mumps. Worryingly, in these countries, a high proportion of cases have been among those who have completed the recommended vaccination schedule, raising alarm about the effectiveness of existing vaccines. Two putative mechanisms of vaccine failure have been proposed as driving observed trends: 1) gradual waning of vaccine-derived immunity (necessitating additional booster doses) and 2) the introduction of novel viral genotypes capable of evading vaccinal immunity.
View Article and Find Full Text PDFThroughout the COVID-19 pandemic, control of transmission has been repeatedly thwarted by the emergence of variants of concern (VOC) and their geographic spread. Key questions remain regarding effective means of minimizing the impact of VOC, in particular the feasibility of containing them at source, in light of global interconnectedness. By analysing a stochastic transmission model of COVID-19, we identify the appropriate monitoring requirements that make containment at source feasible.
View Article and Find Full Text PDFEarly warning signals (EWSs) are a group of statistical time-series signals which could be used to anticipate a critical transition before it is reached. EWSs are model-independent methods that have grown in popularity to support evidence of disease emergence and disease elimination. Theoretical work has demonstrated their capability of detecting disease transitions in simple epidemic models, where elimination is reached through vaccination, to more complex vector transmission, age-structured and metapopulation models.
View Article and Find Full Text PDFTo dissect the transmission dynamics of SARS-CoV-2 in the United States, we integrate parallel streams of high-resolution data on contact, mobility, seasonality, vaccination and seroprevalence within a metapopulation network. We find the COVID-19 pandemic in the US is characterized by a geographically localized mosaic of transmission along an urban-rural gradient, with many outbreaks sustained by between-county transmission. We detect a dynamic tension between the spatial scale of public health interventions and population susceptibility as pre-pandemic contact is resumed.
View Article and Find Full Text PDFThe 2019/2020 influenza season in the United States began earlier than any season since the 2009 H1N1 pandemic, with an increase in influenza-like illnesses observed as early as August. Also noteworthy was the numerical domination of influenza B cases early in this influenza season, in contrast to their typically later peak in the past. Here, we dissect the 2019/2020 influenza season not only with regard to its unusually early activity, but also with regard to the relative dynamics of type A and type B cases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
The rapid growth rate of COVID-19 continues to threaten to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to impose a range of public health strategies achieved via nonpharmaceutical interventions. Broadly, these strategies have fallen into two categories: 1) "mitigation," which aims to achieve herd immunity by allowing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to spread through the population while mitigating disease burden, and 2) "suppression," aiming to drastically reduce SARS-CoV-2 transmission rates and halt endogenous transmission in the target population.
View Article and Find Full Text PDFThe rapid growth in cases of COVID-19 has threatened to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to consider a range of public health strategies achieved by implementing non-pharmaceutical interventions. Broadly, these strategies have fallen into two categories: i) "mitigation", which aims to achieve herd immunity by allowing the SARS-CoV-2 virus to spread through the population while mitigating disease burden, and ii) "suppression", aiming to drastically reduce SARS-CoV-2 transmission rates and halt endogenous transmission in the target population.
View Article and Find Full Text PDFDeveloping methods for anticipating the emergence or reemergence of infectious diseases is both important and timely; however, traditional model-based approaches are stymied by uncertainty surrounding the underlying drivers. Here, we demonstrate an operational, mechanism-agnostic detection algorithm for disease (re-)emergence based on early warning signals (EWSs) derived from the theory of critical slowing down. Specifically, we used computer simulations to train a supervised learning algorithm to detect the dynamical footprints of (re-)emergence present in epidemiological data.
View Article and Find Full Text PDFDespite medical advances, the emergence and re-emergence of infectious diseases continue to pose a public health threat. Low-dimensional epidemiological models predict that epidemic transitions are preceded by the phenomenon of critical slowing down (CSD). This has raised the possibility of anticipating disease (re-)emergence using CSD-based early-warning signals (EWS), which are statistical moments estimated from time series data.
View Article and Find Full Text PDFEpidemic transitions are an important feature of infectious disease systems. As the transmissibility of a pathogen increases, the dynamics of disease spread shifts from limited stuttering chains of transmission to potentially large scale outbreaks. One proposed method to anticipate this transition are early-warning signals (EWS), summary statistics which undergo characteristic changes as the transition is approached.
View Article and Find Full Text PDFIn spite of medical breakthroughs, the emergence of pathogens continues to pose threats to both human and animal populations. We present candidate approaches for anticipating disease emergence prior to large-scale outbreaks. Through use of ideas from the theories of dynamical systems and stochastic processes we develop approaches which are not specific to a particular disease system or model, but instead have general applicability.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2015
This corrects the article DOI: 10.1103/PhysRevE.92.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2015
We develop a generating functional description of the dynamics of non-Markovian individual-based systems in which delay reactions can be terminated before completion. This generalizes previous work in which a path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit of large, but finite, population sizes.
View Article and Find Full Text PDFWe present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured.
View Article and Find Full Text PDFWe develop a systematic approach to the linear-noise approximation for stochastic reaction systems with distributed delays. Unlike most existing work our formalism does not rely on a master equation; instead it is based upon a dynamical generating functional describing the probability measure over all possible paths of the dynamics. We derive general expressions for the chemical Langevin equation for a broad class of non-Markovian systems with distributed delay.
View Article and Find Full Text PDF