We demonstrate a method for the combination of UV-lithography and direct laser writing using two-photon polymerization (2PP-DLW). First a dye doped photoresist is used for UV-lithography. Adding an undoped photoresist on top of the developed structures enables three-dimensional alignment of the 2PP-DLW structures by detecting the spatially varying fluorescence of the two photoresists.
View Article and Find Full Text PDFIn this study, we investigate for the first time morphological and compositional changes of silicon quantum dot (SiQD) light-emitting diodes (SiLEDs) upon device operation. By means of advanced transmission electron microscopy (TEM) analysis including energy filtered TEM (EFTEM) and energy dispersive X-ray (EDX) spectroscopy, we observe drastic morphological changes and degradation for SiLEDs operated under high applied voltage ultimately leading to device failure. However, SiLEDs built from size-separated SiQDs operating under normal conditions show no morphological and compositional changes and the biexponential loss in electroluminescence seems to be correlated to chemical and physical degradation of the SiQDs.
View Article and Find Full Text PDFWhite organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface.
View Article and Find Full Text PDFWe present highly efficient electroluminescent devices using size-separated silicon nanocrystals (ncSi) as light emitting material. The emission color can be tuned from the deep red down to the yellow-orange spectral region by using very monodisperse size-separated nanoparticles. High external quantum efficiencies up to 1.
View Article and Find Full Text PDFWhite organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface.
View Article and Find Full Text PDFWe report a simple approach to enhance the out-coupling efficiency in white organic light emitting diodes (WOLEDs). By incorporating MgF₂-columns into the ITO-anode and optimizing of their geometry, an overall efficiency enhancement of up to 38% is achieved. In addition, the structuring of the anode does not lead to a change in the electrical behaviour of the devices.
View Article and Find Full Text PDFBragg gratings incorporated into organic light-emitting diodes (OLEDs) establish a coupling between waveguide modes and useful light (leaky modes). Here we demonstrate that the net coupling direction depends on the OLED stack design. We fabricated two different device structures with gold Bragg gratings.
View Article and Find Full Text PDF