Publications by authors named "Tobias A Bauer"

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics.

View Article and Find Full Text PDF

Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine--poly(-ethylsulfonyl-l-cysteine) [pSar--pCys(SOEt)] were employed.

View Article and Find Full Text PDF

Translating innovative nanomaterials to medical products requires efficient manufacturing techniques that enable large-scale high-throughput synthesis with high reproducibility. Drug carriers in medicine embrace a complex subset of tasks calling for multifunctionality. Here, the synthesisof pro-drug-loaded core cross-linked polymeric micelles (CCPMs) in a continuous flow processis reported, which combines the commonly separated steps of micelle formation, core cross-linking, functionalization, and purification into a single process.

View Article and Find Full Text PDF
Article Synopsis
  • Therapy resistance is a key factor in cancer mortality, necessitating personalized medicine approaches, including the use of nanoparticles (NPs) designed to target specific resistance mechanisms.
  • Researchers identified the ion channel LRRC8A as a critical player in cisplatin resistance in cancer cells, confirmed through advanced technologies such as next-generation sequencing and CRISPR/Cas9.
  • They developed biocompatible polysarcosine-based nanoparticles loaded with cisplatin that effectively bypassed the LRRC8A transport pathway, significantly improving efficacy against cisplatin-resistant cancer cells compared to standard treatments.
View Article and Find Full Text PDF

An overwhelming majority of articles in psychology compare means, often between multiple groups. However, sometimes we do not know the exact group membership, but only a probability to be in one of the groups. Such information may come from classifiers trained on other datasets, prevalence of group memberships for some parts of the sample, multi-level situations where the group membership is only known as a ratio in an upper level, or expert ratings (e.

View Article and Find Full Text PDF

Core cross-linking of polymeric micelles has been demonstrated to contribute to enhanced stability that can improve the therapeutic efficacy. Photochemistry has the potential to provide spatial resolution and on-demand drug release. In this study, light-sensitive polypyridyl-ruthenium(II) complexes were combined with polypept(o)ides for photocleavable core cross-linked polymeric micelles.

View Article and Find Full Text PDF

Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine).

View Article and Find Full Text PDF

Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation.

View Article and Find Full Text PDF

The secondary structure formation of polypeptides not only governs folding and solution self-assembly but also affects the nucleophilic ring-opening polymerization of α-amino acid-N-carboxyanhydrides (NCAs). Whereby helical structures are known to enhance polymerization rates, β-sheet-like assemblies reduce the propagation rate or may even terminate chain growth by precipitation or gelation. To overcome these unfavorable properties, racemic mixtures of NCAs can be applied.

View Article and Find Full Text PDF

produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPI). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.

View Article and Find Full Text PDF

The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real-time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents.

View Article and Find Full Text PDF