Publications by authors named "Toan Duc Bui"

Accurate segmentation of the brain into gray matter, white matter, and cerebrospinal fluid using magnetic resonance (MR) imaging is critical for visualization and quantification of brain anatomy. Compared to 3T MR images, 7T MR images exhibit higher tissue contrast that is contributive to accurate tissue delineation for training segmentation models. In this paper, we propose a cascaded nested network (CaNes-Net) for segmentation of 3T brain MR images, trained by tissue labels delineated from the corresponding 7T images.

View Article and Find Full Text PDF

To better understand early brain development in health and disorder, it is critical to accurately segment infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Deep learning-based methods have achieved state-of-the-art performance; h owever, one of the major limitations is that the learning-based methods may suffer from the multi-site issue, that is, the models trained on a dataset from one site may not be applicable to the datasets acquired from other sites with different imaging protocols/scanners. To promote methodological development in the community, the iSeg-2019 challenge (http://iseg2019.

View Article and Find Full Text PDF

Due to the extremely low intensity contrast between the white matter (WM) and the gray matter (GM) at around 6 months of age (the isointense phase), it is difficult for manual annotation, hence the number of training labels is highly limited. Consequently, it is still challenging to automatically segment isointense infant brain MRI. Meanwhile, the contrast of intensity images in the early adult phase, such as 24 months of age, is a relatively better, which can be easily segmented by the well-developed tools, e.

View Article and Find Full Text PDF

The deep convolutional neural network has achieved outstanding performance on neonatal brain MRI tissue segmentation. However, it may fail to produce reasonable results on unseen datasets that have different imaging appearance distributions with the training data. The main reason is that deep learning models tend to have a good fitting to the training dataset, but do not lead to a good generalization on the unseen datasets.

View Article and Find Full Text PDF

Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment.

View Article and Find Full Text PDF

Accurate segmentation of infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is an indispensable foundation for early studying of brain growth patterns and morphological changes in neurodevelopmental disorders. Nevertheless, in the isointense phase (approximately 6-9 months of age), due to inherent myelination and maturation process, WM and GM exhibit similar levels of intensity in both T1-weighted (T1w) and T2-weighted (T2w) MR images, making tissue segmentation very challenging. Despite many efforts were devoted to brain segmentation, only few studies have focused on the segmentation of 6-month infant brain images.

View Article and Find Full Text PDF

Background: This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues.

View Article and Find Full Text PDF