Publications by authors named "To Ngai"

Leather alternatives (LAs) offer a promising solution to address the environmental and ethical concerns associated with traditional leather production relying animal hides and chemical tanning agents. However, synthetic polymer-based LAs, such as polyurethane and polyvinyl chloride, have limited broader applications due to their complex manufacture process, high emission of volatile organic compounds, and poor biodegradability. Herein, we present the development of biomass-based LAs fabricated by combining two low-cost natural components - fungal chitin and plant polyphenols (i.

View Article and Find Full Text PDF

Hypothesis: Poly-N-isopropylacrylamide (PNIPAM)-based microgels have garnered significant interest as effective soft particulate stabilizers because of their deformability and functionality. However, the inherent hydrophilic nature of microgel restricts their potential use in stabilizing water-in-oil (W/O) Pickering emulsions. Employing diverse polar additives can improve the hydrophobicity of microgels, thus unlocking new possibilities in inverse Pickering emulsion formation and materials fabrication.

View Article and Find Full Text PDF

Hypothesis: Pickering emulsions that respond to changes in pH by the addition of acid or alkali have been extensively studied, but the development of photo-responsive Pickering emulsions has been more challenging. This study attempts to demonstrate a novel approach to achieve photo-responsiveness in Pickering emulsions by incorporating a photoacid generator (PAG) into the oil phase. Upon UV irradiation, the PAG is expected to release protons (H), which can then regulate the pH of the emulsion system and control its stability.

View Article and Find Full Text PDF

This study presents a novel approach utilizing total internal reflection microscopy (TIRM) to effectively characterize the swelling and collapse of polymer brushes in aqueous solutions. Zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes are chosen as model systems. By investigation of an intriguing theory-experiment discrepancy observed during the measurement of near-wall hindered diffusion, valuable insights into the compressibility of polymer brushes are obtained, revealing their conformational information in aqueous solution.

View Article and Find Full Text PDF

Encapsulation of triethoxyoctylsilane-modified SiO/TiO hollow particles (M-HPs) in polyacrylonitrile (PAN) nanofibrous membranes achieves robust ultraviolet (UV) resistance (UPF value of 1529.31) and broad-spectrum antibacterial effects, surpassing the performance of commercial solid TiO nanoparticles.

View Article and Find Full Text PDF

Incorporating unmodified silica nanoparticles onto polymer latexes to fabricate aqueous polymer dispersions without relying on electrostatic attraction during the Pickering emulsion polymerization process still faces challenges. For negatively charged silica nanoparticles to successfully adsorb onto polymer latexes, particularly in an anionic initiator emulsion polymerization system, they have remained elusive without the use of auxiliary monomers and cationic initiators. This study investigates various experimental parameters, such as emulsion polymerization temperature, monomer solubility, salt concentration, and cation type, to elucidate the factors influencing the adsorption of unmodified silica nanoparticles in Pickering emulsion polymerization.

View Article and Find Full Text PDF

Microsphere-based embolic agents have gained prominence in transarterial embolization (TAE) treatment, a critical minimally invasive therapy widely applied for a variety of diseases such as hypervascular tumors and acute bleeding. However, the development of microspheres with long-term, real-time, and repeated X-ray imaging as well as ultrasound imaging remains challenging. In this study, emulsion-based dual-modal imaging microbeads with a unique internal multi-interface structure is developed for TAE treatment.

View Article and Find Full Text PDF

The incorporation of molecular adjuvants has revolutionized vaccine by boosting overall immune efficacy. While traditional efforts have been concentrated on the quality and quantity of vaccine components, the impact of adjuvant and antigen delivery kinetics on immunity remains to be fully understood. Here, we employed poly (lactic-co-glycolic acid) nanoparticle (PLGA NP) -stabilized Pickering emulsion (PPE) to refine the delivery kinetics of molecular adjuvant CpG and antigen, aiming to optimize immune responses.

View Article and Find Full Text PDF

Pickering double emulsions exhibit higher stability and biocompatibility compared with surfactant-stabilized double emulsions. However, tailored synthesis of particle stabilizers with appropriate wettability is time consuming and complicated and usually limits their large-scale adoption. Using binary stabilizers may be a simple and scalable strategy for Pickering double emulsion formation.

View Article and Find Full Text PDF

Background: The achievement of optimal vaccine efficacy is contingent upon the collaborative interactions between T and B cells in adaptive immunity. Although multiple immunization strategies have been proposed, there is a notable scarcity of comprehensive investigations pertaining to enhance immune effects through immune strategy adjustments for individual vaccine.

Methods: The hierarchically structured aluminum hydroxide microgel-stabilized Pickering emulsion (ASPE) was prepared by ultrasonic method.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses a correction to previous research on protein-based microparticles designed using Pickering emulsions, which are used to create carriers responsive to glutathione levels.
  • These carriers are intended for targeted delivery into tumor cells via endocytosis, enhancing cancer treatment effectiveness.
  • The correction addresses specific details and findings in the original study, ensuring accuracy in the scientific understanding of these innovative drug delivery systems.
View Article and Find Full Text PDF

Tin-based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead-based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin-based perovskite is conducted with a commonly employed ligand, iso-butylammonium iodide (iso-BAI).

View Article and Find Full Text PDF

Tumor hypoxia-associated drug resistance presents a major challenge for cancer chemotherapy. However, sustained delivery systems with a high loading capability of hypoxia-inducible factor-1 (HIF-1) inhibitors are still limited. Here, we developed an ultrastable iodinated oil-based Pickering emulsion (PE) to achieve locally sustained codelivery of a HIF-1 inhibitor of acriflavine and an anticancer drug of doxorubicin for tumor synergistic chemotherapy.

View Article and Find Full Text PDF

The use of glucose oxidase (GOx) to disrupt glucose supply has been identified as a promising strategy in cancer starvation therapy. However, independent delivery of GOx is prone to degradation upon exposure to biological conditions and may cause damage to blood vessels and normal organs during transportation. Although some carriers can protect GOx from the surrounding environment, the harsh preparation conditions may compromise its activity.

View Article and Find Full Text PDF

Waterborne polyurethane (WPU) latex nanoparticles with proven interfacial activity were utilized to stabilize air-water interfaces of Pickering foams through interfacial interaction with hydrophobic fumed silica particles (SPs). The rheological properties of the Pickering foam were tailored through adjustment of their SP content, which influenced their formability and stability. A Pickering foam stabilized with WPU and SPs was used as a template to prepare a WPU-SP composite porous film.

View Article and Find Full Text PDF

Glistenings often occur after implanting the intraocular lens (IOL) due to the formation of numerous microvacuoles (MVs) and may lead to deterioration of vision quality. Previous studies showed the formation of MVs was associated with the hydrophobicity of IOL materials. Yet, the mechanism remains an open question due to the complexity of IOL polymer networks.

View Article and Find Full Text PDF

Recent breakthroughs and advances in nanoscience and nanotechnology have profoundly impacted young-generation education, accelerated knowledge transfer to enhance the quality of life, and improved environmental and economic sustainability. The Chinese University of Hong Kong (CUHK), a globally recognized education and research institute, has played a crucial role in promoting major strategic research directions in nanoscience, including translational biomedicine and information and automation technology, as well as environment and sustainability. To celebrate the 60th Anniversary of CUHK, we present this Virtual Issue that showcases the cutting-edge research at CUHK published in .

View Article and Find Full Text PDF

The intelligent regulation of microgel-stabilized Pickering emulsions with multi-responsiveness is presently constrained to the processes of emulsification and destabilization. However, the expansion of multi-control over Pickering emulsions to involve phase inversion and the investigation of the accompanying processes and mechanisms present a great challenge. In this study, a microgel with dual responsiveness to both pH and temperature was synthesized using an emulsion template.

View Article and Find Full Text PDF

The pervasive presence of plastic packaging has led to significant environmental contamination due to excessive reliance on petrochemicals and the inherent non-biodegradability of these materials. Both bacterial cellulose (BC) and chitosan (CT) films offer a promising option for food packaging purposes due to their sturdy mechanical strength, biodegradability, environmentally friendly manufacturing process, and non-toxic composition. However, the considerable moisture absorption capacity of these eco-friendly materials has hindered their extensive use, as it leads to a reduction in their strength and ability to serve as a barrier.

View Article and Find Full Text PDF

Microgels are excellent emulsifiers that can self-assemble to reduce interfacial tension and form a steric barrier at an oil-water interface. Herein, we report a two-step emulsification approach to prepare oil-in-water-in-oil (O/W/O) Pickering double emulsions through the dispersion of microgels in two immiscible phases. The stabilization mechanism depends on the uneven distribution and adsorption of hydrophilic water-swollen microgels and hydrophobic octanol-swollen microgels on either outer water droplets or inner oil droplets.

View Article and Find Full Text PDF

Therapeutic cancer vaccines are considered as one of the most cost-effective ways to eliminate cancer cells. Although many efforts have been invested into improving their therapeutic effect, transient maturation and activations of dendritic cells (DCs) cause weak responses and hamper the subsequent T cell responses. Here, we report on an alum-stabilized (APE) that can load a high number of antigens and continue to release them for extensive maturation and activations of antigen-presenting cells (APCs).

View Article and Find Full Text PDF

The past decades have witnessed the development of various stimuli-responsive materials with tailored functionalities, enabling droplet manipulation through external force fields. Among different strategies, light exhibits excellent flexibility for contactless control of droplets, particularly in three-dimensional space. Here, we present a facile synthesis of plasmonic hybrid microgels based on the electrostatic heterocoagulation between cationic microgels and anionic Au nanoparticles.

View Article and Find Full Text PDF

The occurrence of many micro/macrophenomena is closely related to interactions and dynamics near interfaces. Hence, developing powerful tools for characterizing near-interface interactions and dynamics has attached great importance among researchers. In this review, we introduce a noninvasive and ultrasensitive technique called total internal reflection microscopy (TIRM).

View Article and Find Full Text PDF

Background: The pervasive presence of plastic packaging has led to significant environmental contamination due to excessive reliance on petrochemicals and the inherent non-biodegradability of these materials. Bacterial cellulose (BC) films present a viable alternative for food packaging applications, owing to their environmentally friendly synthesis process, non-toxic nature, robust mechanical strength, and biodegradability. However, the high hygroscopicity of such bio-based materials has limited their widespread adoption, as it results in diminished strength and barrier properties.

View Article and Find Full Text PDF

Hydrogels are three-dimensional polymer networks derived from hydrophilic macromonomers, which can be categorized as natural, synthetic, or hybrid hydrogels [...

View Article and Find Full Text PDF