Publications by authors named "To Nam Tham"

Recent data support the hypothesis that Gram-positive bacteria (monoderms) arose from Gram-negative ones (diderms) through loss of the outer membrane (OM), but how this happened remains unknown. As tethering of the OM is essential for cell envelope stability in diderm bacteria, its destabilization may have been involved in this transition. In the present study, we present an in-depth analysis of the four known main OM-tethering systems across the Tree of Bacteria (ToB).

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) perform key cellular activities by controlling the function of bound RNAs. The widely held assumption that RBPs are strictly intracellular has been challenged by the discovery of secreted RBPs. However, extracellular RBPs have been described in eukaryotes, while secreted bacterial RBPs have not been reported.

View Article and Find Full Text PDF

Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin-like protein Drp1.

View Article and Find Full Text PDF

ISG15 is an interferon-stimulated, linear di-ubiquitin-like protein, with anti-viral activity. The role of ISG15 during bacterial infection remains elusive. We show that ISG15 expression in nonphagocytic cells is dramatically induced upon Listeria infection.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered that LntA, a virulence factor from Listeria monocytogenes, interacts with the host cell's chromatin repressor BAHD1 to influence immune responses.
  • When bacteria lacking LntA infected epithelial cells, it triggered IFN-λ production, but BAHD1 suppressed the expression of downstream interferon-stimulated genes (ISGs).
  • In contrast, LntA allowed for the activation of ISGs by preventing BAHD1 from binding to them, indicating that this interaction could play a role in regulating immune responses to control bacterial infections.
View Article and Find Full Text PDF

Actin-based motility is used by various pathogens for dissemination within and between cells. Yet host factors restricting this process have not been identified. Septins are GTP-binding proteins that assemble as filaments and are essential for cell division.

View Article and Find Full Text PDF

Listeria monocytogenes is an intracellular bacterial pathogen that invades epithelial cells by subverting two cellular receptors, E-cadherin and Met. We recently identified type II phosphatidylinositol 4-kinases alpha and beta (PI4KIIalpha and PI4KIIbeta) as being required for bacterial entry downstream of Met. In this work, we investigated whether tetraspanins CD9, CD63, and CD81, which figure among the few described molecular partners of PI4KIIalpha, function as molecular adaptors recruiting PI4KIIalpha to the bacterial entry site.

View Article and Find Full Text PDF

Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here we report the identification and characterization of a novel heterochromatinization factor in vertebrates, bromo adjacent homology domain-containing protein 1 (BAHD1). This nuclear protein interacts with HP1, MBD1, HDAC5, and several transcription factors.

View Article and Find Full Text PDF

Septins are filament-forming GTPases implicated in several cellular functions, including cytokinesis. We previously showed that SEPT2, SEPT9, and SEPT11 colocalize with several bacteria entering into mammalian non-phagocytic cells, and SEPT2 was identified as essential for this process. Here, we investigated the function of SEPT11, an interacting partner of SEPT9 whose function is still poorly understood.

View Article and Find Full Text PDF

Background: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB.

Methodology/principal Findings: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells.

View Article and Find Full Text PDF

Upon infection, pathogens reprogram host gene expression. In eukaryotic cells, genetic reprogramming is induced by the concerted activation/repression of transcription factors and various histone modifications that control DNA accessibility in chromatin. We report here that the bacterial pathogen Listeria monocytogenes induces a dramatic dephosphorylation of histone H3 as well as a deacetylation of histone H4 during early phases of infection.

View Article and Find Full Text PDF

Polysialic acid (PSA) on NCAM is an important modulator of cell-cell interactions during development and regeneration. Here we investigated whether PSA overexpression influences neural cell migration and myelination. We stably expressed a GFP-tagged polysialytransferase, PSTGFP, in mouse neurospheres and induced prolonged PSA synthesis.

View Article and Find Full Text PDF

alpha-chemokines, which control the activation and directed migration of leukocytes, participate in the inflammatory processes in host defense response. One of the alpha-chemokines, CXCL12 or stromal cell-derived factor 1 (SDF-1), not only regulates cell growth and migration of hematopoietic stem cells but may also play a central role in brain development as we discuss here. SDF-1 indeed activates the CXCR4 receptor expressed in a variety of neural cells, and this signaling results in diverse biological effects.

View Article and Find Full Text PDF