Publications by authors named "Tkachev I"

We report an estimation of the injected mass composition of ultrahigh energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extragalactic magnetic fields (EGMFs), the results are consistent with a relatively heavy injected composition at E∼10  EeV that becomes lighter up to E∼100  EeV, while the composition at E>100  EeV is very heavy.

View Article and Find Full Text PDF
Article Synopsis
  • The study provides an analytical solution for Bose star growth within a system of gravitationally interacting particles.
  • After the formation of the Bose star, the surrounding particle bath follows a self-similar behavior described by a kinetic equation, which influences the mass changes of the star.
  • The findings not only clarify why star growth slows down at a specific mass but also suggest the potential formation of various mass objects in dark matter scenarios.
View Article and Find Full Text PDF
Article Synopsis
  • - Cosmic rays are high-energy charged particles from space, with the most intense ones believed to originate outside our galaxy.
  • - The Telescope Array experiment has successfully detected an extremely energetic particle, estimated to have an energy of about 40 joules.
  • - The particle’s trajectory leads to a gap in the universe's structure, raising questions about its source, including potential magnetic field interference or gaps in our understanding of particle physics.
View Article and Find Full Text PDF

The study of the optical properties of cirrus clouds is necessary to improve the accuracy of interpreting data from space lidars and ground-based lidar networks. Existing databases of backscattering properties do not include data on hollow columns. In this paper, the backscattering properties of randomly oriented hollow column ice crystal particles in cirrus at wavelengths of 355 nm, 532 nm, and 1064 nm have been investigated.

View Article and Find Full Text PDF

We present a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest. Each annihilation photon has an energy that is five orders of magnitude higher than the energy of photons in optical experiments. It provides a unique opportunity for controlled Compton pre-scattering of initial photons before the polarization measurements.

View Article and Find Full Text PDF

We report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV.

View Article and Find Full Text PDF

We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV.

View Article and Find Full Text PDF
Article Synopsis
  • * Data collection began in early 2019, and initial analyses revealed that KATRIN doubled the known limit on neutrino mass thanks to the excellent performance of its system components.
  • * The laser Raman monitoring system (LARA) continuously tracks the gas composition in the experiment, providing precise measurements of tritium isotopic purity, essential for accurate neutrino mass calculations, achieving greater precision than required.
View Article and Find Full Text PDF

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.

View Article and Find Full Text PDF

We study Bose-Einstein condensation and the formation of Bose stars in virialized dark matter halos and miniclusters by universal gravitational interactions. We prove that this phenomenon does occur and it is described by a kinetic equation. We give an expression for the condensation time.

View Article and Find Full Text PDF

The substructures of light bosonic (axionlike) dark matter may condense into compact Bose stars. We study the collapse of critical-mass stars caused by attractive self-interaction of the axionlike particles and find that these processes proceed in an unexpected universal way. First, nonlinear self-similar evolution (called "wave collapse" in condensed matter physics) forces the particles to fall into the star center.

View Article and Find Full Text PDF

A convergent synthesis of biosynthetic precursors of brassinosteroids - secasterol and 24-episecasterol with Δ²-bond in cycle A is described. The key stages in the construction of the side chain of these compounds were Julia olefination of steroid 22-aldehyde followed by asymmetric Sharpless dihydroxylation of the intermediate Δ²²-olefin. Toxicity of synthesized compounds against breast carcinoma MCF-7 cells was studied.

View Article and Find Full Text PDF

The comparative study of effects of 5alpha-cholest-8(14)-en-15-on-3beta-ol (I), (22E)-5alpha-ergosta-8(14),22-dien-15-on-3beta-ol (II), (22S,23S)-22,23-oxido-5alpha-ergost-8(14)-en- 15-on-3beta-ol (III) and (22R,23R)-22,23-oxido-5alpha-ergost-8(14)-en-15-on-3beta-ol (IV) on HMG-CoA reductase, CYP27A1 and CYP3A4 genes expression in Hep G2 cells was performed. In the contrast to 15-ketocholestane derivative (I), 15-ketoergostane derivatives (II - IV) decreased the HMG- CoA reductase mRNA level; (22R,23R)-22,23-oxido-5alpha-ergost-8(14)-en-15-on-3beta-ol (IV) significantly increased CYP3A4 mRNA level (320% from control). Ketosterol (II) was found to be a more potent inhibitor of cholesterol biosynthesis in Hep G2 cells at a prolong incubation, compared with ketosterol (I).

View Article and Find Full Text PDF

We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model.

View Article and Find Full Text PDF

We propose a strategy for how to look for dark matter particles possessing a radiative decay channel and derive constraints on their parameters from observations of x rays from our own Galaxy and its dwarf satellites. When applied to sterile neutrinos in the keV mass range this approach gives a significant improvement to restrictions on neutrino parameters compared with previous works.

View Article and Find Full Text PDF

The spin-labeling method was used to study the Fab- and Fab-RF-fragments of IgM and IgM-RF, respectively. The spin-label 2,2,6,6-tetramethyl-4-dichloro-sym-triazinyl-aminopiperidine-1-oxyl was introduced into the peptide moiety of the proteins. The rotational correlation time t of the spin-label carrier was determined based on the temperature-viscosity dependence of the EPR spectra parameters of the spin-labeled proteins.

View Article and Find Full Text PDF

(22S,23S)-22,23-Epoxysitosterol, (22R,23R)-22,23-epoxysitosterol, (22S,23S)-22,23-epoxy-7-ketositosterol, (22R,23R)-22,23-epoxy-7-ketositosterol, (22S,23S)-22,23-epoxy-7alpha-hydroxysitosterol, (22R,23R)-22,23-epoxy-7alpha-hydroxysitosterol, (22S,23S)-22,23-epoxy-7beta-hydroxysitosterol, and (22R,23R)-22,23-epoxy-7beta-hydroxysitosterol were synthesized. Their 1H and 13C NMR and the mass spectra of their trimethylsilyl derivatives were studied.

View Article and Find Full Text PDF

We canonically quantize the dynamics of the brane universe embedded into the five-dimensional Schwarzschild-anti-de Sitter bulk space-time. We show that in the brane-world settings the formulation of the quantum cosmology, including the problem of initial conditions, is conceptually more simple than in the (3+1)-dimensional case. The Wheeler-DeWitt equation is a finite-difference equation.

View Article and Find Full Text PDF

New analogues of 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3beta-hydroxy-24-methyl-22,23-oxido-5alpha-cholest-8(14)-en-15-ones and (22RS,23xi,24S)-24-methyl-5alpha-cholesta-3beta,22,23-triol-15-one] were synthesized from (22E,24S)-3beta-acetoxy-24-methyl-5alpha-cholesta-8(14),22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.

View Article and Find Full Text PDF

We construct a consistent model of gravity where the tensor graviton mode is massive, while linearized equations for scalar and vector metric perturbations are not modified. The Friedmann equation acquires an extra dark-energy component leading to accelerated expansion. The mass of the graviton can be as large as approximately (10(15) cm)(-1), being constrained by the pulsar timing measurements.

View Article and Find Full Text PDF

We study, both numerically and analytically, the development of equilibrium after preheating. We show that the process is characterized by the appearance of Kolmogorov spectra and the evolution towards thermal equilibrium follows self-similar dynamics. Simplified kinetic theory gives values for all characteristic exponents which are close to what is observed in lattice simulations.

View Article and Find Full Text PDF

We reconsider the old problem of the dynamics of spontaneous symmetry breaking (SSB) using 3D lattice simulations. We develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that SSB typically completes within a single oscillation as the field rolls towards the minimum of its effective potential.

View Article and Find Full Text PDF

Observation of clustering of ultrahigh energy cosmic rays (UHECR) suggests that they are emitted by compact sources. Assuming small ( <3 degrees ) deflection of UHECR during the propagation, the statistical analysis of clustering allows an estimate of the spatial density of the sources h(*), including those not yet observed. When applied to astrophysical models involving extragalactic sources, the estimate based on 14 events with energy E>10(20) eV gives h(*) approximately 6x10(-3) Mpc(-3).

View Article and Find Full Text PDF