Objective: To investigate the effects of age and central field loss on the landing mechanics and balance control when stepping up to a new level under time-pressure.
Methods: Eight older individuals with age-related macular degeneration (AMD), eight visually normal older and eight visually normal younger individuals negotiated a floor-based obstacle followed by a 'step-up to a new level' task. The task was performed under (1) no-pressure; (2) time-pressure: an intermittent tone was played that increased in frequency and participants had to complete the task before the tone ceased.
Background: Self-report in people with age-related macular degeneration (AMD) shows that they lead less active lifestyles. Physical activity is important as it has been shown to improve quality of life, reduce co-morbidity and also slow down the progression of AMD. Self-reported measures of physical activity are prone to subjective biases and therefore less accurate in quantifying physical activity.
View Article and Find Full Text PDF3-D gait analysis is the gold standard but many healthcare clinics and research institutes would benefit from a system that is inexpensive and simple but just as accurate. The present study examines whether a low-cost 2-D motion capture system can accurately and reliably assess adaptive gait kinematics in subjects with central vision loss, older controls, and younger controls. Subjects were requested to walk up and step over a 10 cm high obstacle that was positioned in the middle of a 4.
View Article and Find Full Text PDFIndividuals with vision loss adapt their locomotion and gaze behaviour to safely negotiate objects in temporally unconstrained situations. However, everyday activities are often performed under time-pressure. We investigated the effects of blur on anxiety, movement kinematics and gaze behaviour during the negotiation of a floor-based obstacle under three amounts of pressure: 1) no-pressure; 2) tonal-pressure: an intermittent tone was played at a constant frequency; 3) tonal + time pressure: the intermittent tone increased in frequency and participants had to walk 20% faster to reach the end of the lab.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
February 2019
Purpose: Limited evidence suggests that cross-education affords clinical benefits in the initial 8 weeks after anterior cruciate ligament (ACL) reconstruction, but it is unknown if such cross-education effects are reproducible and still present in later phases of rehabilitation. We examined whether cross-education, as an adjuvant to standard therapy, would accelerate the rehabilitation up to 26 weeks after ACL reconstruction by attenuating quadriceps weakness.
Methods: ACL-reconstructed patients were randomized into experimental (n = 22) and control groups (n = 21).
Purpose: Cross-education reduces quadriceps weakness 8 weeks after anterior cruciate ligament (ACL) surgery, but the long-term effects are unknown. We investigated whether cross-education, as an adjuvant to the standard rehabilitation, would accelerate recovery of quadriceps strength and neuromuscular function up to 26 weeks post-surgery.
Methods: Group allocation was randomized.
Purpose: The function of the anterior cruciate ligament (ACL) patients' non-injured leg is relevant in light of the high incidence of secondary ACL injuries on the contralateral side. However, the non-injured leg's function has only been examined for a selected number of neuromuscular outcomes and often without appropriate control groups. We measured a broad array of neuromuscular functions between legs of ACL patients and compared outcomes to age, sex, and physical activity matched controls.
View Article and Find Full Text PDFPurpose: Unilateral strength training strengthens not only the muscles on the trained side but also the homologous muscles on the untrained side; however, the magnitude of this interlimb cross-education is modest. We tested the hypothesis that heightened sensory feedback by mirror viewing the exercising hand would augment cross education by modulating neuronal excitability.
Methods: Healthy adults were randomized into a mirror training group (MG, N = 11) and a no-mirror training group (NMG, N = 12) and performed 640 shortening muscle contractions of the right wrist flexors at 80% maximum voluntary contraction (MVC) during 15 sessions for 3 wk.
Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC).
View Article and Find Full Text PDFThe present review proposes the untested hypothesis that cross-education performed with a mirror increases the transfer of motor function to the resting limb compared with standard cross-education interventions without a mirror. The hypothesis is based on neuroanatomical evidence suggesting an overlap in activated brain areas when a unilateral motor task is performed with and without a mirror in the context of cross-education of the upper extremities. The review shows that the mirror-neuron system (MNS), connecting sensory neurons responding to visual properties of an observed action and motor neurons that discharge action potentials during the execution of a similar action, has the potential to enhance cross-education.
View Article and Find Full Text PDFResistance exercise has been shown to be a potent stimulus for neuromuscular adaptations. These adaptations are not confined to the exercising muscle and have been consistently shown to produce increases in strength and neural activity in the contralateral, homologous resting muscle; a phenomenon known as cross-education. This observation has important clinical applications for those with unilateral dysfunction given that cross-education increases strength and attenuates atrophy in immobilized limbs.
View Article and Find Full Text PDF