Publications by authors named "Tjeerd Sijmonsma"

The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically.

View Article and Find Full Text PDF

G protein-coupled receptor 182 (GPR182) has been shown to be expressed in endothelial cells; however, its ligand and physiological role has remained elusive. We found GPR182 to be expressed in microvascular and lymphatic endothelial cells of most organs and to bind with nanomolar affinity the chemokines CXCL10, CXCL12, and CXCL13. In contrast to conventional chemokine receptors, binding of chemokines to GPR182 did not induce typical downstream signaling processes, including G- and G-mediated signaling or β-arrestin recruitment.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease ranges from steatosis to non-alcoholic steatohepatitis (NASH), potentially progressing to cirrhosis and hepatocellular carcinoma (HCC). Here, we show that platelet number, platelet activation and platelet aggregation are increased in NASH but not in steatosis or insulin resistance. Antiplatelet therapy (APT; aspirin/clopidogrel, ticagrelor) but not nonsteroidal anti-inflammatory drug (NSAID) treatment with sulindac prevented NASH and subsequent HCC development.

View Article and Find Full Text PDF

Most antidiabetic drugs treat disease symptoms rather than adipose tissue dysfunction as a key pathogenic cause in the metabolic syndrome and type 2 diabetes. Pharmacological targeting of adipose tissue through the nuclear receptor PPARg, as exemplified by glitazone treatments, mediates efficacious insulin sensitization. However, a better understanding of the context-specific PPARg responses is required for the development of novel approaches with reduced side effects.

View Article and Find Full Text PDF

Background: Nutrients are transported through endothelial cells before being metabolized in muscle cells. However, little is known about the regulation of endothelial transport processes. Notch signaling is a critical regulator of metabolism and angiogenesis during development.

View Article and Find Full Text PDF

Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling.

View Article and Find Full Text PDF

Obesity-related insulin resistance represents the core component of the metabolic syndrome, promoting glucose intolerance, pancreatic beta cell failure and type 2 diabetes. Efficient and safe insulin sensitization and glucose control remain critical therapeutic aims to prevent diabetic late complications Here, we identify transforming growth factor beta-like stimulated clone (TSC) 22 D4 as a molecular determinant of insulin signalling and glucose handling. Hepatic TSC22D4 inhibition both prevents and reverses hyperglycaemia, glucose intolerance and insulin resistance in diabetes mouse models.

View Article and Find Full Text PDF
Article Synopsis
  • Cachexia is a severe energy-wasting syndrome commonly seen in cancer patients, leading to significant muscle and fat loss.
  • Tumor exposure in mice initiated a cycle of energy loss in fat cells, marked by both fat breakdown and creation, alongside inactivated AMP-activated protein kinase (Ampk), which usually helps maintain energy levels.
  • The introduction of an Ampk-stabilizing peptide (ACIP) showed promise in reducing fat wasting, suggesting that maintaining Ampk function could be a potential therapeutic approach for cachexia.
View Article and Find Full Text PDF

Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health.

View Article and Find Full Text PDF

Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity.

View Article and Find Full Text PDF

Objective. Glyoxalase-1 is an enzyme detoxifying methylglyoxal (MG). MG is a potent precursor of advanced glycation endproducts which are regarded to be a key player in micro- and macrovascular damage.

View Article and Find Full Text PDF

Objective: Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids.

View Article and Find Full Text PDF

Regulatory T (Treg) cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT). Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature.

View Article and Find Full Text PDF

In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction.

View Article and Find Full Text PDF

Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes.

View Article and Find Full Text PDF

Disturbances in lipid homeostasis are hallmarks of severe metabolic disorders and their long-term complications, including obesity, diabetes, and atherosclerosis. Whereas elevation of triglyceride (TG)-rich very-low-density lipoproteins (VLDL) has been identified as a risk factor for cardiovascular complications, high-density lipoprotein (HDL)-associated cholesterol confers atheroprotection under obese and/or diabetic conditions. Here we show that hepatocyte-specific deficiency of transcription factor transforming growth factor β 1-stimulated clone (TSC) 22 D1 led to a substantial reduction in HDL levels in both wild-type and obese mice, mediated through the transcriptional down-regulation of the HDL formation pathway in liver.

View Article and Find Full Text PDF

Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction.

View Article and Find Full Text PDF

In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. Here, we show that tumour growth triggers hepatic metabolic dysfunction as part of the cancer cachectic phenotype, particularly by reduced hepatic very-low-density-lipoprotein (VLDL) secretion and hypobetalipoproteinemia. As a molecular cachexia output pathway, hepatic levels of the transcription factor transforming growth factor beta 1-stimulated clone (TSC) 22 D4 were increased in cancer cachexia.

View Article and Find Full Text PDF

The role of vascular endothelial growth factor (VEGF) in renal fibrosis, tubular cyst formation, and glomerular diseases is incompletely understood. We studied a new conditional transgenic mouse system [Pax8-rtTA/(tetO)(7)VEGF], which allows increased tubular VEGF production in adult mice. The following pathology was observed.

View Article and Find Full Text PDF

Sulfoglycolipids are present on the surface of a variety of cells. The sulfatide SM4s is increased in lung, renal, and colon cancer and is associated with an adverse prognosis, possibly due to a low immunoreactivity of the tumor. As macrophages significantly contribute to the inflammatory infiltrate in malignancies, we postulated that SM4s may modulate macrophage function.

View Article and Find Full Text PDF

Integrin-mediated cell adhesion and signaling is essential to vascular development and inflammatory processes. Elevated expression of integrin alpha(v)beta(3) has been detected in ischemia-reperfusion injury and rejecting heart allografts. We thus hypothesized that the inhibition of alpha(v)-associated integrins may have potent anti-inflammatory effects in acute kidney allograft rejection.

View Article and Find Full Text PDF

Mice require testicular glycosphingolipids (GSLs) for proper spermatogenesis. Mutant mice strains deficient in specific genes encoding biosynthetic enzymes of the GSL pathway including Galgt1 (encoding GM2 synthase) and Siat9 (encoding GM3 synthase) have been established lacking various overlapping subsets of GSLs. Although male Galgt1-/- mice are infertile, male Siat9-/- mice are fertile.

View Article and Find Full Text PDF

Chemokines bind to sulfated cell surface glycosaminoglycans and thereby modulate signaling mediated by G-protein-coupled seven-transmembrane domain chemokine receptors. Similar to glycosaminoglycans, sulfated oligosaccharides are also exposed on the cell surface by sulfatides, a class of glycosphingolipids. We have now identified sulfated glycosphingolipids (sulfatides) as novel binding partners for chemokines.

View Article and Find Full Text PDF

Objective: The cholesteryl ester transfer protein (CETP) plays a key role in the remodeling of triglyceride (TG)-rich and HDL particles. Sequence variations in the CETP gene may interfere with the effect of lipid-lowering treatment in type 2 diabetes.

Research Design And Methods: We performed a 30-week randomized double-blind placebo-controlled trial with atorvastatin 10 mg (A10) and 80 mg (A80) in 217 unrelated patients with diabetes.

View Article and Find Full Text PDF