Publications by authors named "Tjasa Kunavar"

During the learning of a new sensorimotor task, individuals are usually provided with instructional stimuli and relevant information about the target task. The inclusion of haptic devices in the study of this kind of learning has greatly helped in the understanding of how an individual can improve or acquire new skills. However, the way in which the information and stimuli are delivered has not been extensively explored.

View Article and Find Full Text PDF

Error based motor learning can be driven by both sensory prediction error and reward prediction error. Learning based on sensory prediction error is termed sensorimotor adaptation, while learning based on reward prediction error is termed reward learning. To investigate the characteristics and differences between sensorimotor adaptation and reward learning, we adapted a visuomotor paradigm where subjects performed arm movements while presented with either the sensory prediction error, signed end-point error, or binary reward.

View Article and Find Full Text PDF

The human sensorimotor control has evolved in the Earth's environment where all movement is influenced by the gravitational force. Changes in this environmental force can severely impact the performance of arm movements which can be detrimental in completing certain tasks such as piloting or controlling complex vehicles. For this reason, subjects that are required to perform such tasks undergo extensive training procedures in order to minimize the chances of failure.

View Article and Find Full Text PDF

Our sensorimotor control is well adapted to normogravity environment encountered on Earth and any change in gravity significantly disturbs our movement. In order to produce appropriate motor commands for aimed arm movements such as pointing or reaching, environmental changes have to be taken into account. This adaptation is crucial when performing successful movements during microgravity and hypergravity conditions.

View Article and Find Full Text PDF