Antimicrobial resistance is a major threat to human health. Basic knowledge of antimicrobial mechanism of action (MoA) is imperative for patient care and for identification of novel antimicrobials. However, the process of antimicrobial MoA identification is relatively laborious.
View Article and Find Full Text PDFCyclic β-sheet decapeptides from the tyrocidine group and the homologous gramicidin S were the first commercially used antibiotics, yet it remains unclear exactly how they kill bacteria. We investigated their mode of action using a bacterial cytological profiling approach. Tyrocidines form defined ion-conducting pores, induce lipid phase separation, and strongly reduce membrane fluidity, resulting in delocalization of a broad range of peripheral and integral membrane proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including () blockage of cell wall synthesis, () membrane pore formation, and () the generation of altered membrane curvature leading to aberrant recruitment of proteins.
View Article and Find Full Text PDFBacterial cell division is a highly coordinated process that begins with the polymerization of the tubulin-like protein FtsZ at midcell. FtsZ polymerization is regulated by a set of conserved cell division proteins, including ZapA. However, a zapA mutation does not result in a clear phenotype in Bacillus subtilis.
View Article and Find Full Text PDFThe use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these colonies. Here, we describe a method to systematically identify genomic DNA elements that are able to induce many stably transfected mammalian cell lines.
View Article and Find Full Text PDFThe creation of highly productive mammalian cell lines often requires the screening of large numbers of clones, and even then expression levels are often low. Previously, we identified DNA elements, anti-repressor or STAR elements, that increase protein expression levels. These positive effects of STAR elements are most apparent when stable clones are established under high selection stringency.
View Article and Find Full Text PDFThe expression of transgenic proteins is often low and unstable over time, a problem that may be due to integration of the transgene in repressed chromatin. We developed a screening technology to identify genetic elements that efficiently counteract chromatin-associated repression. When these elements were used to flank a transgene, we observed a substantial increase in the number of mammalian cell colonies that expressed the transgenic protein.
View Article and Find Full Text PDF