Publications by authors named "Tiziana M Cafarelli"

Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers.

View Article and Find Full Text PDF

In the highly conserved DNA damage regulated gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference.

View Article and Find Full Text PDF

Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles.

View Article and Find Full Text PDF

Alkylation DNA lesions are ubiquitous, and result from normal cellular metabolism as well as from treatment with methylating agents and chemotherapeutics. DNA damage tolerance by translesion synthesis DNA polymerases has an important role in cellular resistance to alkylating agents. However, it is not yet known whether Escherichia coli (E.

View Article and Find Full Text PDF

The activity of DinB is governed by the formation of a multiprotein complex (MPC) with RecA and UmuD. We identified two highly conserved surface residues in DinB, cysteine 66 (C66) and proline 67 (P67). Mapping on the DinB tertiary structure suggests these are noncatalytic, and multiple-sequence alignments indicate that they are unique among DinB-like proteins.

View Article and Find Full Text PDF

We use a powerful method to replace wild-type genes on the chromosome of Escherichia coli. Using a unique form of PCR, we generate easily constructible gene fusions bearing single point mutations. Used in conjunction with homologous recombination, this method eliminates cloning procedures previously used for this purpose.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm14hi93qs0i42k5e9vsne5pcaitlu5d2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once