Publications by authors named "Tize Liu"

Organic Raman probes, including polymers and small molecules, have attracted great attention in biomedical imaging owing to their excellent biocompatibility. However, the development of organic Raman probes is usually hindered by a mismatch between their absorption spectra and wavelength-fixed excitation, which makes it difficult to achieve resonance excitation necessary to obtain strong Raman signals. Herein, we introduce a covalent organic framework (COF) into the fine absorption spectrum regulation of organic Raman probes, resulting in their significant Raman signal enhancement.

View Article and Find Full Text PDF

The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures.

View Article and Find Full Text PDF

The intraoperative imaging applications of a large number of Raman probes are hampered by the overlap of their signals with the background Raman signals generated by biological tissues. Here, we describe a molecular planarization strategy for adjusting the Raman shift of these Raman probes to avoid interference. Using this strategy, we modify the backbone of thiophene polymer-poly(3-hexylthiophene) (P3HT), and obtain the adjacent thiophene units planarized polycyclopenta[2,1-b;3,4-b']dithiophene (PCPDT).

View Article and Find Full Text PDF

Raman imaging is a powerful tool for the diagnosis of cancers and visualization of various biological processes. Polymers possessing excellent biocompatibility are promising probes for Raman imaging. However, few polymers are reported to serve as Raman probes for in vivo imaging, mainly due to the intrinsic weak Raman signal intensity and fluorescence interference of these polymers.

View Article and Find Full Text PDF