Publications by authors named "Titus Gherman"

The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds.

View Article and Find Full Text PDF

The first application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) in the near-ultraviolet for the simultaneous detection of two key atmospheric trace species, HONO and NO2, is reported. For both compounds the absorption is measured between 360 and 380 nm with a compact cavity-enhanced spectrometer employing a high power light-emitting diode. Detection limits of approximately 4 ppbv for HONO and approximately 14 ppbv for NO2 are reported for a static gas cell setup using a 20 s acquisition time.

View Article and Find Full Text PDF

We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals (NO3, NO2, O3, H2O) in an atmospheric simulation chamber under realistic atmospheric conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is significantly longer than in previous studies that use high finesse optical cavities to achieve high absorption sensitivity.

View Article and Find Full Text PDF

State-of-the-art experiments and calculations are used to record and assign the data obtained in the weakly absorbing blue energy region of the H2O spectrum. Continuous-wave cavity ringdown absorption spectroscopy with Doppler resolution is used to probe the range from 25,195 to 25,470 cm(-1) with an absorption sensitivity of approximately 1 parts per 10(9) (ppb)/cm. 62 lines of the polyad nu(OH)=8 are reported, of which 43 are assigned using variational nuclear calculations.

View Article and Find Full Text PDF

We demonstrate the principle of cavity enhanced absorption with femtosecond modelocked lasers. The wide spectral coverage allowed by these sources makes this a promising high-sensitivity linear absorption technique. The uniformity of the modelocked frequency comb is the feature allowing effective injection of a high finesse cavity.

View Article and Find Full Text PDF