Publications by authors named "Titorenko V"

We propose a hypothesis of a mechanism linking cellular aging to cellular quiescence in chronologically aging budding yeast. Our hypothesis posits that this mechanism integrates four different processes, all of which are initiated after yeast cells cultured in a medium initially containing glucose consume it. Quiescent cells that develop in these cultures can be separated into the high- and low-density sub-populations of different buoyant densities.

View Article and Find Full Text PDF

After budding yeast cells cultured in a nutrient-rich liquid medium with 0.2% glucose (under caloric restriction conditions) or 2% glucose (under non-caloric restriction conditions), ferment glucose to ethanol and then consume ethanol, they enter the stationary phase. The process of their chronological aging begins.

View Article and Find Full Text PDF

Caloric restriction and the mutation are robust geroprotectors in yeast and other eukaryotes. Lithocholic acid is a potent geroprotector in . Here, we used liquid chromatography coupled with tandem mass spectrometry method of non-targeted metabolomics to compare the effects of these three geroprotectors on the intracellular metabolome of chronologically aging budding yeast.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Metabolomics is a methodology used for the identification and quantification of many low-molecular-weight intermediates and products of metabolism within a cell, tissue, organ, biological fluid, or organism. Metabolomics traditionally focuses on water-soluble metabolites. The water-soluble metabolome is the final product of a complex cellular network that integrates various genomic, epigenomic, transcriptomic, proteomic, and environmental factors.

View Article and Find Full Text PDF

After cells cultured in a medium with glucose consume glucose, the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture. An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed here. We also describe various hallmarks of quiescent and non-quiescent yeast cells.

View Article and Find Full Text PDF

In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply.

View Article and Find Full Text PDF

Lipids are structurally diverse amphipathic molecules that are insoluble in water. Lipids are essential contributors to the organization and function of biological membranes, energy storage and production, cellular signaling, vesicular transport of proteins, organelle biogenesis, and regulated cell death. Because the budding yeast Saccharomyces cerevisiae is a unicellular eukaryote amenable to thorough molecular analyses, its use as a model organism helped uncover mechanisms linking lipid metabolism and intracellular transport to complex biological processes within eukaryotic cells.

View Article and Find Full Text PDF

Flaviviridae infections represent a major global health burden. By deciphering mechanistic aspects of hepatitis C virus (HCV)-host interactions, one could discover common strategy for inhibiting the replication of related flaviviruses. By elucidating the HCV interactome, we identified the 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) as a human hub of the very-long-chain fatty acid (VLCFA) synthesis pathway and core interactor.

View Article and Find Full Text PDF

We have recently found that PE21, an extract from the white willow , slows chronological aging and prolongs longevity of the yeast more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes.

View Article and Find Full Text PDF

Our understanding of the molecular mechanisms underlying cellular and organismal aging andaging-associated pathology has advanced greatly in recent years [...

View Article and Find Full Text PDF

Recent studies have revealed that some low-molecular weight molecules produced in mitochondria are essential contributing factors to aging and aging-associated pathologies in evolutionarily distant eukaryotes. These molecules are intermediates or products of certain metabolic reactions that are activated in mitochondria in response to specific changes in the nutrient, stress, proliferation, or age status of the cell. After being released from mitochondria, these metabolites directly or indirectly change activities of a distinct set of protein sensors that reside in various cellular locations outside of mitochondria.

View Article and Find Full Text PDF

Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells.

View Article and Find Full Text PDF

We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay.

View Article and Find Full Text PDF

All presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply.

View Article and Find Full Text PDF

A dietary regimen of caloric restriction delays aging in evolutionarily distant eukaryotes, including the budding yeast . Here, we assessed how caloric restriction influences morphological, biochemical and cell biological properties of chronologically aging yeast advancing through different stages of the aging process. Our findings revealed that this low-calorie diet slows yeast chronological aging by mechanisms that coordinate the spatiotemporal dynamics of various cellular processes before entry into a non-proliferative state and after such entry.

View Article and Find Full Text PDF

A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the "liponecrotic" mode of regulated cell death in .

View Article and Find Full Text PDF

The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast . These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally.

View Article and Find Full Text PDF

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing.

View Article and Find Full Text PDF

A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake.

View Article and Find Full Text PDF

Emergent evidence indicates that certain aspects of lipid synthesis, degradation and interorganellar transport play essential roles in modulating the pace of cellular aging in the budding yeast Saccharomyces cerevisiae. The molecular mechanisms underlying the vital roles of lipid metabolism and transport in defining yeast longevity have begun to emerge. The scope of this review is to critically analyze recent progress in understanding such mechanisms.

View Article and Find Full Text PDF

3,3'-Diindolylmethane (DIM) and its synthetic halogenated derivatives 4,4'-Br- and 7,7'-ClDIM (ring-DIMs) have recently been shown to induce protective autophagy in human prostate cancer cells. The mechanisms by which DIM and ring-DIMs induce autophagy have not been elucidated. As DIM is a mitochondrial ATP-synthase inhibitor, we hypothesized that DIM and ring-DIMs induce autophagy via alteration of intracellular AMP/ATP ratios and activation of AMP-activated protein kinase (AMPK) signaling in prostate cancer cells.

View Article and Find Full Text PDF

The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles.

View Article and Find Full Text PDF