Publications by authors named "Tito Viswanathan"

Phosphate is one of the most costly and complex environmental pollutants that leads to eutrophication, which decreases water quality and access to clean water. Among different adsorbents, biochar is one of the promising adsorbents for phosphate removal as well as heavy metal removal from an aqueous solution. In this study, biochar was impregnated with nano zinc oxide in the presence of glycine betaine.

View Article and Find Full Text PDF

Nanocomposites containing mixed metal oxides show excellent phosphate removal results and are better compared to individual metal oxides. In this research, cerium/manganese oxide nanocomposites, embedded on the surface of modified cellulose pine wood shaving, were synthesized by a simple technique that is both eco-friendly and economically feasible. No toxic or petroleum chemicals were employed during preparation.

View Article and Find Full Text PDF

Herein, a facile synthesis of heteroatom doped biochar is reported. The material is characterized and analyzed in detail for its application as a low-cost adsorbent for removal of a toxic dye pollutant, Methylene Blue (MB), from aqueous solution. Synthesized material showed enhanced surface area compared to parent biochar (458 to802 mg) The adsorbent's performance is investigated using batch adsorption methods with experiments conducted at varying conditions of adsorbent dosage, initial dye concentration (50-500 mg/L), and pH (3-11).

View Article and Find Full Text PDF

A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix.

View Article and Find Full Text PDF

In this paper, we explore the use of two organic materials that have been touted for use as photovoltaic (PV) materials: inherently conducting polymers (ICPs) and carbon nanotubes (CNTs). Due to these materials' attractive features, such as environmental stability and tunable electrical properties, our focus here is to evaluate the use of polyaniline (PANI) and single wall carbon nanotube (SWNT) films in heterojunction diode devices. The devices are characterized by electron microscopy (film morphology), current-voltage characteristics (photovoltaic behavior), and UV/visible/NIR spectroscopy (light absorption).

View Article and Find Full Text PDF

We have investigated the effect of adiponectin (APN) peptide II on new vessel growth in mouse model of choroidal neovascularization (CNV) or wet type age-related macular degeneration (AMD). Mice were injected intraperitoneally with APN peptide II, control peptide, or PBS on day 1-7 or day 5-14. APN, AdipoR1, PCNA, and VEGF localization was investigated using confocal microscopy, immunohistochemistry, and RT-PCR.

View Article and Find Full Text PDF

Silymarin encompasses a group of flavonolignans that are extracted from Silybum marianum (Asteraceae) fruits. The silymarins have previously been reported to lower low-density lipoprotein (LDL) levels associated with high-fat diets. The present study reports the efficacy of the silymarins in inhibiting oxidized low-density lipoprotein (oxLDL) generation and subsequent scavenger receptor (SR) mediated monocyte adherence to oxLDL.

View Article and Find Full Text PDF

The aim of this study was to investigate the role of adiponectin (APN) in a mouse model of laser induced choroidal neovascularization (CNV). We have shown by immunohistochemistry that the expression of APN, adiponectin receptor 1, adiponectin receptor 2 and T cadherin gradually increased from day 1 to day 7 post-laser in laser treated mice compared to controls. Recombinant APN (rAPN) was injected intraperitoneally (i.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effect of N-phenacyl-4,5-dimethylthiazolium bromide (DMPTB), an advanced glycation end product (AGE) cross-link breaker, on lens protein cross-links formed in vitro and in vivo. DMPTB was synthesized and its structure confirmed by its NMR spectrum. To show whether DMPTB can inhibit AGE cross-linking, recombinant human alphaA-crystallin was glycated with glucose-6-phosphate (G6P) in the presence and absence of DMPTB.

View Article and Find Full Text PDF