Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo.
View Article and Find Full Text PDFBackground: Detachable microneedles (DMNs) are dissolvable microneedles that detach from the base during administration. The use of DMNs-containing steroids for acne has never been investigated.
Methods: Thirty-five patients with facial inflammatory acne were evaluated for acne treatment efficacy and safety of DMNs and DMNs containing triamcinolone acetonide (TA) via a 28-day randomized, double-blind, controlled trial.
Drug Deliv Transl Res
November 2022
To minimize chemical degradation of retinal, we graft this aldehyde on chitosan chains to make them self-assemble into pro-retinal nanoparticles (PRNs), which we then load into detachable dissolvable microneedles (DDMNs) made of 1:1 (by weight) hyaluronic acid/maltose. The presence of PRNs in the hyaluronic acid-maltose needle matrix also helps improve the microneedles' mechanical strength. Ex vivo administration of PRN-loaded DDMNs on fresh porcine ear skin shows, as observed by stereomicroscopic and confocal fluorescence microscopic analyses of the cross-sectioned tissue pieces, complete deposition followed by dissolution of the needles and diffusion of the PRNs in epidermis and dermis.
View Article and Find Full Text PDFDelivering bioactive compounds into skin tissue has long been a challenge. Using ex vivo porcine and rat skins, here we demonstrate that a detachable dissolvable microneedle (DDMN) array, a special dissolvable microneedle that allows needle detachment from the base within 2 min post administration, can effectively embed a model compound into epidermis and dermis. Diffusion of the compound from the needle embedding sites to the nearby skin tissue is demonstrated at various post administration periods.
View Article and Find Full Text PDFDelivering cells to desired locations in the body is needed for disease treatments, tissue repairs, and various scientific investigations such as animal models for drug development. Here, we report the solid composite material that when embedded with viable cells, can temporarily keep cells alive. Using the material, we also show the fabrication of detachable dissolvable microneedles (DMNs) that can instantly deliver viable cells into skin tissue.
View Article and Find Full Text PDFTopical retinoid treatments stimulate biological activities in the skin. The main physical barrier, which limits the efficacy of transdermal drug delivery, is the stratum corneum. Proretinal nanoparticles (PRN) have already been proven to efficiently deliver retinal into the epidermis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
Here we show that the ability of oxidized carbon particles to penetrate phospholipid bilayer membrane varies with the particle shapes, chemical functionalities on the particle surface, lipid compositions of the membrane and pH conditions. Among the similar surface charged oxidized carbon particles of spherical (oxidized carbon nanosphere, OCS), tubular (oxidized carbon nanotube, OCT), and sheet (oxidized graphene sheet, OGSh) morphologies, OCS possesses the highest levels of adhesion to lipid bilayer membrane and penetration into the cell-sized liposome. OCS preferably binds better to the disordered lipid bilayer membrane (consisting of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) as compared to the ordered membrane (consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine and cholesterol).
View Article and Find Full Text PDFA great challenge exists in finding safe, simple, and effective delivery strategies to bring matters across cell membrane. Popular methods such as viral vectors, positively charged particles and cell penetrating peptides possess some of the following drawbacks: safety issues, lysosome trapping, limited loading capacity, and toxicity, whereas electroporation produces severe damages on both cargoes and cells. Here, we show that a serendipitously discovered, relatively nontoxic, water dispersible, stable, negatively charged, oxidized carbon nanoparticle, prepared from graphite, could deliver macromolecules into cells, without getting trapped in a lysosome.
View Article and Find Full Text PDF