The synthesis and structure-activity relationships of novel 4-(4'-fluorophenyl)imidazoles as selective p38α MAPK, CK1δ and JAK2 inhibitors with improved water solubility are described. Microwave-assisted multicomponent reactions afforded 4-fluorophenyl-2,5-disubstituted imidazoles. Carboxylate and phosphonate groups were introduced via 'click' reactions.
View Article and Find Full Text PDFThe design, synthesis and biological evaluation of novel triazolyl p38α MAPK inhibitors with improved water solubility for formulation in cationic liposomes (SAINT-O-Somes) targeted at diseased endothelial cells is described. Water-solubilizing groups were introduced via a 'click' reaction of functional azides with 2-alkynyl imidazoles and isosteric oxazoles to generate two small libraries of 1,4-disubstituted 1,2,3-triazolyl p38α MAPK inhibitors. Triazoles with low IC50 values and desired physicochemical properties were screened for in vitro downregulation of proinflammatory gene expression and were formulated in SAINT-O-Somes.
View Article and Find Full Text PDFThe endothelium represents an attractive therapeutic target due to its pivotal role in many diseases including chronic inflammation and cancer. Small interfering RNAs (siRNAs) specifically interfere with the expression of target genes and are considered an important new class of therapeutics. However, due to their size and charge, siRNAs do not spontaneously enter unperturbed endothelial cells (EC).
View Article and Find Full Text PDFBackground: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD). Metformin activates AMP-activated protein kinase (AMPK), the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2012
TRPV6 is considered the primary protein responsible for transcellular Ca2+ absorption. In vitro studies demonstrate that a negatively charged amino acid (D) within the putative pore region of mouse TRPV6 (position 541) is critical for Ca2+ permeation of the channel. To elucidate the role of TRPV6 in transepithelial Ca2+ transport in vivo, we functionally analyzed a TRPV6D541A/D541A knockin mouse model.
View Article and Find Full Text PDFNephrol Dial Transplant
November 2012
Background: Klotho(-/-) mice display disturbed Ca(2+) and vitamin D homeostasis. Renal cytochrome p450 27b1 (Cyp27b1), the enzyme that catalyzes the hydrolysis to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is increased in klotho(-/-) mice, and a 1,25(OH)(2)D(3)-deficient diet partially normalized Ca(2+) homeostasis in these klotho(-/-) mice. The aim of the present study was to further delineate the interplay between 1,25(OH)(2)D(3) and klotho and their relative contribution to the Ca(2+) homeostasis of klotho(-/-) mice.
View Article and Find Full Text PDFUnlabelled: Bile acid-CoA:amino acid N-acyltransferase (BAAT) conjugates bile salts to glycine or taurine, which is the final step in bile salt biosynthesis. In addition, BAAT is required for reconjugation of bile salts in the enterohepatic circulation. Recently, we showed that BAAT is a peroxisomal protein, implying shuttling of bile salts through peroxisomes for reconjugation.
View Article and Find Full Text PDFBackground: Bile acids, reactive oxygen species (ROS) and inflammatory cytokines are crucial regulators of cell death in acute and chronic liver diseases. The contribution of each factor to hepatocyte death, either apoptosis or necrosis, has not been clarified as yet. It has been suggested that the generation of oxidative stress by bile acids contributes to hepatocyte death during cholestasis and bile acid toxicity, although the beneficial role of ROS prevention in bile acid-mediated cell death is not fully understood.
View Article and Find Full Text PDFBackground: Hypomagnesemia with secondary hypocalcemia is due to disturbed renal and intestinal magnesium (Mg(2+)) (re)absorption. The underlying defect is a mutation in the transient receptor potential melastatin type 6 (TRPM6), a Mg(2+)-permeable ion channel expressed in the kidney and intestine. Our aim was to characterize homozygous (-/-) and heterozygous (+/-) TRPM6 knockout mice with respect to Mg(2+) homeostasis.
View Article and Find Full Text PDFUnlabelled: Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism.
View Article and Find Full Text PDFDisturbed calcium (Ca(2+)) homeostasis, which is implicit to the aging phenotype of klotho-deficient mice, has been attributed to altered vitamin D metabolism, but alternative possibilities exist. We hypothesized that failed tubular Ca(2+) absorption is primary, which causes increased urinary Ca(2+) excretion, leading to elevated 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and its sequelae. Here, we assessed intestinal Ca(2+) absorption, bone densitometry, renal Ca(2+) excretion, and renal morphology via energy-dispersive x-ray microanalysis in wild-type and klotho(-/-) mice.
View Article and Find Full Text PDFThe transient receptor potential (TRP) superfamily consists, in mammals, of six protein subfamilies, TRPC, TRPM, TRPV, TRPA, TRPML and TRPP. TRPs are cation channels involved in many physiological processes and in the pathogenesis of various disorders. In the kidney, TRP channels are expressed along the nephron, and a role for some of these channels in renal function has been proposed.
View Article and Find Full Text PDF