Electrorheological fluids (ERF) have garnered significant attention for their potential to provide actuation on demand. Similarly, developing stimuli-responsive printable inks for flexible electronics is also gaining antecedence. However, developing a material that demonstrates both functionalities is far and few.
View Article and Find Full Text PDFStretchable, flexible sensors are one of the most critical components of smart wearable electronics and Internet of Things (IoT), thereby attracting multipronged research interest in the last decades. Following miniaturization and multicomponent development of several sensors in one could further propel the demand for wireless, multimodal platforms. Greener substitutes to conventional sensors that can operate in a self-powered configuration are highly desirable in terms of all-in-one sensor utilities.
View Article and Find Full Text PDFHuman skin has several receptors collaborating with the brain to provide appropriate "decisions" when applying stimuli. Several research articles state that biomimetic electronic skin (e-skin) is reportedly used for sensor-related applications and performs similarly to natural skin. However, research reporting the capability of the e-skin to make decisions and therefore react upon exposure to adverse conditions is still in its nascent stage.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Developing an electronic skin (e-skin) is becoming popular due to its capability to mimic human skin's ability to detect various stimuli. Mostly, such skins are tactile-based sensors. However, the exploration of nontactile-based sensing capability in the e-skin is still in a nascent stage.
View Article and Find Full Text PDFRapid consumption of traditional energy resources creates utmost research interest in developing self-sufficient electrical devices to progress next-generation electronics to a level up. To address the global energy crisis, moisture-electric generators (MEGs) are proving to be an emerging technology in this field, capable of powering wearable electronics by harvesting energy from abundantly available ambient moisture without any requirement for external/additional energy. Recent advances in MEGs generally utilize an inorganic, metal, or petroleum-based polymeric material as an active material, which may produce sufficient current but lacks the flexibility and stretchability required for wearable electronics.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENG) are promising alternatives for clean energy harvesting. However, the material utilization in the development of TENG relies majorly on polymers derived from non-renewable resources. Therefore, minimizing the carbon footprint associated with such TENG development demands a shift toward usage of sustainable materials.
View Article and Find Full Text PDFFlexible strain sensors have garnered attraction in the human healthcare domain. However, caveats like crosstalk and noise associated with the output signal of such a sensor often limit the accuracy. Hence, developing a strain sensor frugal engineering is critical, thereby warranting its mass utility.
View Article and Find Full Text PDFDeveloping a flexible temperature sensor with appreciable sensitivity is critical for advancing research related to flexible electronics. Although various flexible sensors are available commercially, most such temperature sensors are made from polymeric materials obtained from petrochemical resources. Such sensors will contribute to electronic waste and increase the carbon footprint after usage.
View Article and Find Full Text PDFDeveloping a sensor that can read out cross-talk free signals while determining various active physiological parameters is demanding in the field of point-of-care applications. While there are a few examples of non-flexible sensors available, the management of electronic waste generated from such sensors is critical. Most of such available sensors are rigid in form factor and hence limit their usability in healthcare monitoring due to their poor conformity to human skin.
View Article and Find Full Text PDFDeveloping sensors for monitoring physiological parameters such as temperature and strain for point of care (POC) diagnostics is critical for better care of the patients. Various commercial sensors are available to get the job done; however, challenges like the structural rigidity of such sensors confine their usage. As an alternative, flexible sensors have been looked upon recently.
View Article and Find Full Text PDFDeveloping a printed elastomeric wearable sensor with good conformity and proper adhesion to skin, coupled with the capability of monitoring various physiological parameters, is very crucial for the development of point-of-care sensing devices with high precision and sensitivity. While there have been previous reports on the fabrication of elastomeric multifunctional sensors, research on the printable elastomeric multifunctional adhesive sensor is not very well explored. Herein, we report the development of a stencil printable multifunctional adhesive sensor fabricated in a solvent-free condition, which demonstrated the capability of having good contact with skin and its ability to function as a temperature and strain sensor.
View Article and Find Full Text PDFNanofillers (NFs) are becoming a ubiquitous choice for applications in different technological innovations in various fields, from biomedical devices to automotive product portfolios. Potential physical attributes like large surface areas, high surface energy, and lower structural imperfections make NFs a popular filler over microfillers. One specific application, where NFs are finding applications, is in adhesive science and technology.
View Article and Find Full Text PDFAmong the different types of specialty polymers, polysiloxane finds its position in the pyramid's apex in terms of its performance attributes. Its unique structural features result in it having superior performance benefits over wide operational conditions. Hence, polysiloxanes are used in various industries.
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS) polymers are highly appreciated materials that are broadly applied in several industries, from baby bottle nipples to rockets. Momentive researchers are continuously working to understand and expand the scope of PDMS-based materials. Fluorofunctional PDMS has helped the world to apply in specialty applications.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
June 2016
The processing of abasic site DNA damage lesions in extracellular DNA in the presence of engineered carbon nanomaterials (CNMs) is demonstrated. The efficacy of the apurinic-apyrimidinic endonuclease 1 (APE1) in the cleavage of abasic site lesions in the presence of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) and graphene oxide (GO) are compared. The CNMs were found to perturb the incision activity of APE1.
View Article and Find Full Text PDFGrafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "" synthetic pathway by which high molecular weight polymer, poly(ε-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2014
A "grafting to" methodology for the attachment of a silane based polymer (SG) onto functionalized graphitic platelets is demonstrated. The siloxy end groups of the modifier were further cross-linked without addition of any external curative. These sterically stabilized nanoplatelets with a high grafting density ensured complete screening of the attractive interparticle interactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2014
The generation of stress in expanded graphite (E-GPT) due to covalent attachment of bulky side groups connected via a hetero atom is reported. Specifically, E-GPT is modified at different levels of grafting using "click" chemistry to graft 1-ethynyl-4-fluoro benzene onto graphene sheets via a triazole ring. In the range of grafting densitites examined, Raman spectroscopy indicates that the stress generated in graphene is linearly dependent on the extent of grafting.
View Article and Find Full Text PDF