The production of sustainable diesel without hydrogen addition remains a challenge for low-cost fuel production. In this work, the pyrolysis of unsaturated fatty acid (UFA) basic soaps was studied for the production sustainable diesel (bio-hydrocarbons). UFAs were obtained from palm fatty acids distillate (PFAD), which was purified by the fractional crystallization method.
View Article and Find Full Text PDFPyrolysis is one of the available technologies to convert oleic basic soap into gasoline-compatible fuel. In this research, the process mentioned was applied using the mixture of Ca, Mg, Zn in the production of oleic basic soap. The reactions were carried out in a batch glass reactor at atmospheric pressure at the temperature of 450 °C.
View Article and Find Full Text PDFCrude oil contaminated lands are recognised to have significant contributions to airborne volatile organic compounds (VOCs) with adverse effects on human health and tropospheric ozone. Soil capping systems for controlling harmful emissions are critical engineering solutions where advanced soil remediation techniques are neither available nor feasible. Studies on the adsorption of single VOC species in biochar have shown promising results as a potential capping material; however, current understanding of mixed gas system and multi-component adsorption of VOCs on biochar which would represent more realistic in situ conditions is very limited.
View Article and Find Full Text PDFThis work studied the oxidative degradation performance of manganese gluconate as a liquid redox sulfur recovery (LRSR) agent. The degradation of gluconate in an aerated sulfide containing 0.1 M manganese/0.
View Article and Find Full Text PDFTerpineol, a promising valorisation product of pine industry, is widely used as an active ingredient for disinfectant soap, cleansers, perfumes, and pharmaceutical purposes. Synthesis of terpineol is generally carried out by separation of α-pinene compounds from crude turpentine through fractionation and then hydrated (addition of water) with the help of acid catalysts. However, direct turpentine hydration without pre-fractionation process can be more beneficial from economic and process point of views.
View Article and Find Full Text PDFIron chelate liquid redox sulfur recovery (LRSR) has been one of the most frequently recommended technologies for the oxidation of HS in natural gas into elemental sulfur, particularly when the acid gas has a high CO/HS molar ratio. The process is however known to suffer from extensive oxidative ligand degradation that results in high operational costs. Moreover, poor biodegradability or toxicity of the existing ligand has become a concern.
View Article and Find Full Text PDF