Publications by authors named "Tirtha Som"

The growing challenges of environmental purification by solar photocatalysis, precious-metal-free catalysis, and photocurrent generation in photovoltaic cells receive the utmost global attention. Here we demonstrate a one-pot, green chemical synthesis of a new stable heterostructured, ecofriendly, multifunctional microcomposite that consists of α-Bi2 O3 microneedles intercalated with anchored graphene oxide (GO) microsheets (1.0 wt %) for the above-mentioned applications on a large economical scale.

View Article and Find Full Text PDF

A unique direct electrodeposition technique involving very high current densities, high voltages and high electrolyte concentrations is applied for highly selective mass synthesis of stable, isolable, surfactant-free, single-crystalline Bi hexagons on a Cu wire at room temperature. A formation mechanism of the hexagons is proposed. The morphology, phase purity, and crystallinity of the material are well characterized by FESEM, AFM, TEM, SAED, EDX, XRD, and Raman spectroscopy.

View Article and Find Full Text PDF

An antimony oxide based monolithic glass with very high Sb2O3 content (70 mol%) in the system K2O-B2O3-Sb2O3 (KBS) has been prepared for the first time. Its phonon energy (602 cm(-1)), evaluated by infrared reflection spectroscopy, is found to be very close to that of fluoride glasses (500-600 cm(-1)). After doping with different rare-earth ions, their UV-vis absorption and photoluminescence properties have been explored, compared with those observed in other hosts and justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics.

View Article and Find Full Text PDF

A new series of monolithic Eu(2)O(3)-doped high antimony oxide (40-80 mol%) content disordered matrices (glasses) of low phonon energy (about 600 cm(-1)) in the K(2)O-B(2)O(3)-Sb(2)O(3) (KBS) system was prepared by the melt-quench technique. Infrared reflection spectroscopy was used to establish the low phonon energy of the glasses. Amorphicity and devitrification of the glasses were confirmed by x-ray diffraction analysis.

View Article and Find Full Text PDF

Dichroic Sm(3+): Au-antimony glass nanocomposites are synthesized in a new reducing glass (dielectric) matrix (mol%) K(2)O-B(2)O(3)-Sb(2)O(3) (KBS) by a single-step melt-quench technique involving selective thermochemical reduction. X-ray diffraction (XRD) and selected area electron diffraction (SAED) results indicate that Au(0) nanoparticles are grown along the (200) plane direction. The transmission electron microscopic (TEM) image reveals the elliptical Au(0) nanoparticles having major axis range 12-17 nm.

View Article and Find Full Text PDF