In Lepidoptera (butterflies and moths), the genomic region around the gene is a "hotspot" locus, repeatedly implicated in generating intraspecific melanic wing color polymorphisms across 100 million years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. We show that none of the four candidate protein-coding genes within this locus, including , serve as major effectors.
View Article and Find Full Text PDFButterfly wings display a diversity of cell types, including large polyploid scale cells, yet the molecular basis of such diversity is poorly understood. To explore scale cell diversity at a transcriptomic level, we employ single-cell RNA sequencing of ∼5,200 large cells (>6 μm) from 22.5- to 25-h male pupal forewings of the butterfly Bicyclus anynana.
View Article and Find Full Text PDFIn Lepidoptera (butterflies and moths), the genomic region around the gene is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including , serve as major effectors.
View Article and Find Full Text PDFWnt signaling members are involved in the differentiation of cells associated with eyespot and band color patterns on the wings of butterflies, but the identity and spatio-temporal regulation of specific Wnt pathway members remains unclear. Here, we explore the localization and function of Armadillo/β-catenin dependent (canonical) and Armadillo/β-catenin independent (noncanonical) Wnt signaling in eyespot and band development in by localizing Armadillo (Arm), the expression of all eight ligand and four receptor transcripts present in the genome of this species and testing the function of some of the ligands and receptors using CRISPR-Cas9. We show that distinct Wnt signaling pathways are essential for eyespot and band patterning in butterflies and are likely interacting to control their active domains.
View Article and Find Full Text PDFIf the same pigment is found in different tissues in a body, it is natural to assume that the same metabolic pathways are deployed similarly in each tissue. Here we show that this is not the case for ommochromes, the red and orange pigments found in the eyes and wings of butterflies. We tested the expression and function of vermilion and cinnabar, two known fly genes in the ommochrome pathway, in the development of pigments in the eyes and in the wings of Bicyclus anynana butterflies, both traits having reddish/orange pigments.
View Article and Find Full Text PDFThe assignment of specific patterns of gene expression to specific cells in a complex tissue facilitates the connection between genotype and phenotype. Single-cell sequencing of whole tissues produces single-cell transcript resolution but lacks the spatial information of the derivation of each cell, whereas techniques such as multiplex FISH localize transcripts to specific cells in a tissue but require a priori information of the target transcripts to examine. Laser dissection of tissues followed by transcriptome analysis is an efficient and cost-effective technique that provides both unbiased gene expression discovery together with spatial information.
View Article and Find Full Text PDFButterfly wing scales can develop intricate cuticular nanostructures that produce silver colors, but the underlying genetic and physical basis of such colors is mostly unexplored. Here, we characterize different types of wild-type silver scales in Bicyclus anynana butterflies and show that the varying thickness of the air layer between two cuticular laminas is most important for producing silvery broadband reflectance. We then address the function of five genes-apterous A, Ultrabithorax, doublesex, Antennapedia, and optix-in silver scale development by examining crispants with either ectopic gains or losses of silver scales.
View Article and Find Full Text PDFTwo genes, Distal-less (Dll) and spalt (sal), are known to be involved in establishing nymphalid butterfly wing patterns. They function in several ways: in the differentiation of the eyespot's central signalling cells, or foci; in the differentiation of the surrounding black disc; in overall scale melanisation (Dll); and in elaborating marginal patterns, such as parafocal elements. However, little is known about the functions of these genes in the development of wing patterns in other butterfly families.
View Article and Find Full Text PDFHow mechanisms of pattern formation evolve has remained a central research theme in the field of evolutionary and developmental biology. The mechanism of wing vein differentiation in is a classic text-book example of pattern formation using a system of positional information, yet very little is known about how species with a different number of veins pattern their wings, and how insect venation patterns evolved. Here, we examine the expression pattern of genes previously implicated in vein differentiation in in two butterfly species with more complex venation and We also test the function of some of these genes in We identify both conserved as well as new domains of , , , , , , , and gene expression in butterflies, and propose how the simplified venation in might have evolved via loss of , and gene expression domains, via silencing of vein-inducing programs at Spalt-expression boundaries, and via changes in expression of vein maintenance genes.
View Article and Find Full Text PDFThe colorful wings of butterflies are emerging as model systems for evolutionary and developmental studies. Some of these studies focus on localizing gene transcripts and proteins in wings at the larval and pupal stages using techniques such as immunostaining and in situ hybridization. Other studies quantify mRNA expression levels or identify regions of open chromatin that are bound by proteins at different stages of wing development.
View Article and Find Full Text PDFCRISPR-Cas9 is revolutionizing the field of genome editing in non-model organisms. The robustness, ease of use, replicability and affordability of the technology has resulted in its widespread adoption among researchers. The African butterfly is an emerging model lepidopteran species in the field of evo-devo, with a sequenced genome and amenable to germ line transformation.
View Article and Find Full Text PDFEyespots on the wings of nymphalid butterflies represent colorful examples of pattern formation, yet the developmental origins and mechanisms underlying eyespot center differentiation are still poorly understood. Using CRISPR-Cas9 we re-examine the function of Distal-less (Dll) as an activator or repressor of eyespots, a topic that remains controversial. We show that the phenotypic outcome of CRISPR mutations depends upon which specific exon is targeted.
View Article and Find Full Text PDFFranconibacter pulveris strain DJ34, isolated from Duliajan oil fields, Assam, was characterized in terms of its taxonomic, metabolic and genomic properties. The bacterium showed utilization of diverse petroleum hydrocarbons and electron acceptors, metal resistance, and biosurfactant production. The genome (4,856,096bp) of this strain contained different genes related to the degradation of various petroleum hydrocarbons, metal transport and resistance, dissimilatory nitrate, nitrite and sulfite reduction, chemotaxy, biosurfactant synthesis, etc.
View Article and Find Full Text PDFWe report here the 4,856,096-bp draft genome sequence of hydrocarbon-degrading Cronobacter sp. strain DJ34 isolated from crude oil-containing sludge from the Duliajan oil fields, India. DJ34 contains genes that mediate hydrocarbon degradation, metal resistance, and biosurfactant production.
View Article and Find Full Text PDFArsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates.
View Article and Find Full Text PDF