Recent advances in 3D printing have enabled the manufacture of porous electrodes which cannot be machined using traditional methods. With micron-scale precision, the pore structure of an electrode can now be designed for optimal energy efficiency, and a 3D printed electrode is not limited to a single uniform porosity. As these electrodes scale in size, however, the total number of possible pore designs can be intractable; choosing an appropriate pore distribution manually can be a complex task.
View Article and Find Full Text PDFIn modern cancer treatment, there is significant interest in studying the use of drug molecules either directly injected into the bloodstream or delivered by nanoparticle (NP) carriers of various shapes and sizes. During treatment, these carriers may extravasate through pores in the tumor vasculature that form during angiogenesis. We provide an analytical, computational, and experimental examination of the extravasation of point particles (e.
View Article and Find Full Text PDF