Using a life tables approach with 2011-2017 claims data, we calculated lifetime risks of infection (CDI) beginning at age 18 years. The lifetime CDI risk rates were 32% in female patients insured by Medicaid, 10% in commercially insured male patients, and almost 40% in females with end-stage renal disease.
View Article and Find Full Text PDFAffinity-optimized T cell receptors can enhance the potency of adoptive T cell therapy. Afamitresgene autoleucel (afami-cel) is a human leukocyte antigen-restricted autologous T cell therapy targeting melanoma-associated antigen A4 (MAGE-A4), a cancer/testis antigen expressed at varying levels in multiple solid tumors. We conducted a multicenter, dose-escalation, phase 1 trial in patients with relapsed/refractory metastatic solid tumors expressing MAGE-A4, including synovial sarcoma (SS), ovarian cancer and head and neck cancer ( NCT03132922 ).
View Article and Find Full Text PDFObjective: Few data are available to quantify the infection (CDI) burden in US adults depending on Medicaid insurance status; thus, we sought to contribute to this body of information.
Methods: Retrospective cohort study to identify adults with codes for CDI from 2011 to 2017 in MarketScan commercial and Medicaid databases (for those aged 25-64 years) and the CMS Medicare database (for those aged ≥65 years). CDI was categorized as healthcare-facility-associated (HCA-CDI) and community-associated CDI (CA-CDI).
Objective: To examine the association between state-mandated insurance coverage for infertility treatment in the United States and the utilization of and indication for preimplantation genetic testing.
Methods: This was a retrospective cohort study of 301,465 in vitro fertilization (IVF) cycles reported to the Society for Assisted Reproductive Technology between 2014 and 2016. Binomial logistic regression was performed to examine associations between state-mandated insurance coverage and preimplantation genetic testing use.
Background And Aims: Early-onset colorectal cancer (CRC) is increasing in many developed countries. Type 2 diabetes mellitus has increased substantially in younger adults; however, its role in early-onset CRC remains unidentified.
Methods: We conducted a claims-based nested case-control study using IBM MarketScan Commercial Database (2006-2015).
Objective: Factors that lead to metabolic dysregulation are associated with increased risk of early-onset colorectal cancer (CRC diagnosed under age 50). However, the association between metabolic syndrome (MetS) and early-onset CRC remains unexamined.
Design: We conducted a nested case-control study among participants aged 18-64 in the IBM MarketScan Commercial Database (2006-2015).
Background: Gene-modified autologous T cells expressing NY-ESO-1, an affinity-enhanced T-cell receptor (TCR) reactive against the NY-ESO-1-specific HLA-A*02-restricted peptide SLLMWITQC (NY-ESO-1 SPEAR T-cells; GSK 794), have demonstrated clinical activity in patients with advanced synovial sarcoma (SS). The factors contributing to gene-modified T-cell expansion and the changes within the tumor microenvironment (TME) following T-cell infusion remain unclear. These studies address the immunological mechanisms of response and resistance in patients with SS treated with NY-ESO-1 SPEAR T-cells.
View Article and Find Full Text PDFBackground: There is variability in access to and utilization of orthopaedic care, particularly for those with Medicaid insurance. One potential contributor is perceived unwillingness of surgeons and hospitals to accept underinsured patients. We used administrative data to examine the payer mix for select inpatient orthopaedic surgical procedures at all hospitals within a single region, hypothesizing that the delivery of orthopaedic surgery to Medicaid beneficiaries varies highly at the hospital level.
View Article and Find Full Text PDFWe evaluated the safety and activity of autologous T cells expressing NY-ESO-1, an affinity-enhanced T-cell receptor (TCR) recognizing an HLA-A2-restricted NY-ESO-1/LAGE1a-derived peptide, in patients with metastatic synovial sarcoma (NY-ESO-1T cells). Confirmed antitumor responses occurred in 50% of patients (6/12) and were characterized by tumor shrinkage over several months. Circulating NY-ESO-1T cells were present postinfusion in all patients and persisted for at least 6 months in all responders.
View Article and Find Full Text PDFBackground: Human-induced pluripotent stem cells (hiPSCs) are a potentially invaluable resource for regenerative medicine, including the in vitro manufacture of blood products. HiPSC-derived red blood cells are an attractive therapeutic option in hematology, yet exhibit unexplained proliferation and enucleation defects that presently preclude such applications. We hypothesised that substantial differential regulation of gene expression during erythroid development accounts for these important differences between hiPSC-derived cells and those from adult or cord-blood progenitors.
View Article and Find Full Text PDFTransforming growth factor β (TGFβ) is a potent inhibitor of hematopoietic stem and progenitor cell proliferation. However, the precise mechanism for this effect is unknown. Here, we have identified the transcription factor Gata2, previously described as an important regulator of hematopoietic stem cell function, as an early and direct target gene for TGFβ-induced Smad signaling in hematopoietic progenitor cells.
View Article and Find Full Text PDFThe role of infection in erythropoietic dysfunction is poorly understood. In children with P. falciparum malaria, the by-product of hemoglobin digestion in infected red cells (hemozoin) is associated with the severity of anemia which is independent of circulating levels of the inflammatory cytokine tumor necrosis alpha (TNF-α).
View Article and Find Full Text PDFWe used the paradigmatic GATA-PU.1 axis to explore, at the systems level, dynamic relationships between transcription factor (TF) binding and global gene expression programs as multipotent cells differentiate. We combined global ChIP-seq of GATA1, GATA2, and PU.
View Article and Find Full Text PDFGene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells.
View Article and Find Full Text PDFThe stochastic nature of generating eukaryotic transcripts challenges conventional methods for obtaining and analyzing single-cell gene expression data. In order to address the inherent noise, detailed methods are described on how to collect data on multiple genes in a large number of single cells using microfluidic arrays. As part of a study exploring the effect of genotype on Wnt pathway activation, data were collected for 96 qPCR assays on 1440 lymphoblastoid cells.
View Article and Find Full Text PDFHow the molecular programs of differentiated cells develop as cells transit from multipotency through lineage commitment remains unexplored. This reflects the inability to access cells undergoing commitment or located in the immediate vicinity of commitment boundaries. It remains unclear whether commitment constitutes a gradual process, or else represents a discrete transition.
View Article and Find Full Text PDFUnremitting blood cell production throughout the lifetime of an organism is reliant on hematopoietic stem cells (HSCs). A rare and relatively quiescent cell type, HSCs are, on entry into cell cycle fated to self-renew, undergo apoptosis or differentiate to progenitors (HPCs) that eventually yield specific classes of blood cells. Disruption of these HSC fate decisions is considered to be fundamental to the development of leukemia.
View Article and Find Full Text PDFThe zinc finger transcription factor GATA-2 has been implicated in the regulation of hematopoietic stem cells. Herein, we explored the role of GATA-2 as a candidate regulator of the hematopoietic progenitor cell compartment. We showed that bone marrow from GATA-2 heterozygote (GATA-2(+/-)) mice displayed attenuated granulocyte-macrophage progenitor function in colony-forming cell (CFC) and serial replating CFC assays.
View Article and Find Full Text PDFSpecific deletion of Notch1 and RBPjkappa in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta.
View Article and Find Full Text PDFChronic myelogenous leukemia is caused by the Bcr-Abl hybrid gene that encodes the p210Bcr-Abl chimeric oncoprotein. Although it reduces the total body burden of leukemia cells, the use of imatinib mesylate as a single agent may be accompanied by the evolution of resistance due mainly to the acquisition of point mutations. Imatinib has been combined with drugs that inhibit both the active and the inactive states of the p210Bcr-Abl kinase.
View Article and Find Full Text PDFLineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines.
View Article and Find Full Text PDFThe chimaeric protein Bcr/Abl, the hallmark of chronic myeloid leukaemia, has been connected with several signalling pathways, such as those involving protein kinase B/Akt, JNK (c-Jun N-terminal kinase) or ERKs (extracellular-signal-regulated kinases) 1 and 2. However, no data about the p38 MAPK (mitogen-activated protein kinase) have been reported. Here, we present evidence showing that Bcr/Abl is able to modulate this signalling pathway.
View Article and Find Full Text PDF