Optoelectronic devices based on high aspect ratio nanowires bring new challenges for transparent electrodes, which can be well addressed by using hybrid structures. Here we demonstrate that a composite contact to radial junction nanowire solar cells made of a thin indium-tin oxide (ITO) layer and silver nanowires greatly improves the collection of charge carriers as compared to a single thick ITO layer by reducing the series resistance losses while improving the transparency. The optimization is performed on p-i-n solar cells comprising of dense non-vertical nanowires with a p-doped c-Si core and an ultra-thin a-Si:H absorption layer grown by plasma-enhanced chemical vapor deposition on glass substrates.
View Article and Find Full Text PDFIn the quest for the replacement of indium tin oxide (ITO), Ti-doped zinc oxide (TZO) films have been synthesized by atomic layer deposition (ALD) and applied as an n-type transparent conductive oxide (TCO). TZO thin films were obtained from titanium (IV) -propoxide (TTIP), diethyl zinc, and water by introducing TiO growth cycle in a ZnO matrix. Process parameters such as the order of precursor introduction, the cycle ratio, and the film thickness were optimized.
View Article and Find Full Text PDF