Publications by authors named "Tiozzo S"

Allorecognition in is controlled by a highly polymorphic locus (the ), and functionally similar to missing-self recognition utilized by Natural Killer cells-compatibility is determined by sharing a self-allele, and integration of activating and inhibitory signals determines outcome. We had found these signals were generated by two -encoded receptors, called and Here we show that genes are members of an extended family consisting of >37 loci, and co-expressed with an even more diverse gene family-the (). The are membrane proteins related to , but include conserved tyrosine motifs, including ITIMs and hemITAMs.

View Article and Find Full Text PDF

Many asexually-propagating marine invertebrates can survive extreme environmental conditions by developing dormant structures, i.e., morphologically simplified bodies that retain the capacity to completely regenerate a functional adult when conditions return to normal.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) mortality burden is increasing worldwide, but accurate estimates on the magnitude of the impact of the COVID-19 pandemic are missing. Mortality rates vary largely when considering PD as underlying cause of death (UCOD), or as one among multiple causes reported in death certificates (MCOD). The aim of this study is to assess COVID-19 impact on PD-related mortality trends using the UCOD and MCOD approach.

View Article and Find Full Text PDF

In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants.

View Article and Find Full Text PDF

Colonial tunicates are the only chordates that regularly regenerate a fully functional whole body as part of their asexual life cycle, starting from specific epithelia and/or mesenchymal cells. In addition, in some species, whole-body regeneration (WBR) can also be triggered by extensive injuries, which deplete most of their tissues and organs and leave behind only small fragments of their body. In this manuscript, we characterized the onset of WBR in one colonial tunicate long used as a laboratory model We first analyzed the transcriptomic response to a WBR-triggering injury.

View Article and Find Full Text PDF

Stem cells (SCs) in vertebrates typically reside in "stem cell niches" (SCNs), morphologically restricted tissue microenvironments that are important for SC survival and proliferation. SCNs are broadly defined by properties including physical location, but in contrast to vertebrates and other "model" organisms, aquatic invertebrate SCs do not have clearly documented niche outlines or properties. Life strategies such as regeneration or asexual reproduction may have conditioned the niche architectural variability in aquatic or marine animal groups.

View Article and Find Full Text PDF

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities.

View Article and Find Full Text PDF

The developmental and evolutionary principles of coloniality in marine animals remain largely unexplored. Although many common traits have evolved independently in different groups of colonial animals, questions about their significance for colonial life histories remain unanswered. In 2018 (Nov.

View Article and Find Full Text PDF

Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently.

View Article and Find Full Text PDF

Bindin is a sperm protein that mediates attachment and membrane fusion of gametes. The mode of bindin evolution varies across sea urchin genera studied to date. In three genera it evolves under positive selection, in four under mostly purifying selection, and in one, results have been mixed.

View Article and Find Full Text PDF

Nearly half of the animal phyla contain species that propagate asexually via agametic reproduction, often forming colonies of genetically identical modules, that is, ramets, zooids, or polyps. Clonal reproduction, colony formation, and modular organization have important consequences for many aspects of organismal biology. Theories in ecology, evolution, and development are often based on unitary and, mainly, strictly sexually reproducing organisms, and though colonial animals dominate many marine ecosystems and habitats, recognized concepts for the study of clonal species are often lacking.

View Article and Find Full Text PDF

Tunicates encompass a large group of marine filter-feeding animals and more than half of them are able to reproduce asexually by a particular form of nonembryonic development (NED) generally called budding. The phylogeny of tunicates suggests that asexual reproduction is an evolutionarily plastic trait, a view that is further reinforced by the fact that budding mechanisms differ from one species to another, involving nonhomologous tissues and cells. In this review, we explore more than 150 years of literature to provide an overview of NED diversity and we present a comparative picture of budding tissues across tunicates.

View Article and Find Full Text PDF

Background: In various ascidian species, circulating stem cells have been documented to be involved in asexual reproduction and whole-body regeneration. Studies of these cell population(s) are mainly restricted to colonial species. Here, we investigate the occurrence of circulating stem cells in the solitary a member of the Styelidae, a family with at least two independent origins of coloniality.

View Article and Find Full Text PDF

Background: In tunicates, the capacity to build an adult body via non-embryonic development (NED), i.e., asexual budding and whole body regeneration, has been gained or lost several times across the whole subphylum.

View Article and Find Full Text PDF

Higher diversity and dominance at lower latitudes has been suggested for colonial species. We verified this pattern in species richness of ascidians, finding that higher colonial-to-solitary species ratios occur in the tropics and subtropics. At the latitudinal region with the highest ratio, in southeastern Brazil, we confirmed that colonial species dominate space on artificial plates in two independent studies of five fouling communities.

View Article and Find Full Text PDF

Background: In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development.

View Article and Find Full Text PDF

Background: The rapidly growing population of elderly subjects with multimorbidity is at risk of receiving fragmented and uncoordinated care, and have frequent hospitalizations and emergency room (ER) visits.

Aims: The study aims to describe the impact of a care management program (CMP) developed in the Veneto region (Northeastern Italy) for patients affected by chronic heart failure (CHF) and multimorbidity.

Methods: The CMP was provided to 330 patients > 65 years suffering from CHF and multimorbidity.

View Article and Find Full Text PDF

During metamorphosis of solitary ascidians, part of the larval tubular nervous system is recruited to form the adult central nervous system (CNS) through neural stem-like cells called ependymal cells. The anteroposterior (AP) gene expression patterning of the larval CNS regionalize the distribution of the ependymal cells, which contains the positional information of the neurons of the adult nervous system. In colonial ascidians, the CNS of asexually developed zooids has the same morphology of the one of the post-metamorphic zooids.

View Article and Find Full Text PDF

Asexual propagation and whole body regeneration are forms of nonembryonic development (NED) widespread across animal phyla and central in life history and evolutionary diversification of metazoans. Whereas it is challenging to reconstruct the gains or losses of NED at large phylogenetic scale, comparative studies could benefit from being conducted at more restricted taxonomic scale, in groups for which phylogenetic relationships are well established. The ascidian family of Styelidae encompasses strictly sexually reproducing solitary forms as well as colonial species that combine sexual reproduction with different forms of NED.

View Article and Find Full Text PDF

Background: Thaliaceans is one of the understudied classes of the phylum Tunicata. In particular, their phylogenetic relationships remain an issue of debate. The overall pattern of serotonin (5-HT) distribution is an excellent biochemical trait to interpret internal relationships at order level.

View Article and Find Full Text PDF

Organisms that have evolved alternative modes of reproduction, complementary to the sexual mode, are found across metazoans. The chordate Botryllus schlosseri is an emerging model for asexual development studies. Botryllus can rebuild its entire body from a portion of adult epithelia in a continuous and stereotyped process called blastogenesis.

View Article and Find Full Text PDF

In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.

View Article and Find Full Text PDF

Background: Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes.

View Article and Find Full Text PDF

Background: Simple life cycles arise from complex life cycles when one or more developmental stages are lost. This raises a fundamental question - how can an intermediate stage, such as a larva, be removed, and development still produce a normal adult? To address this question, we examined the development in several species of pelagiid jellyfish. Most members of Pelagiidae have a complex life cycle with a sessile polyp that gives rise to ephyrae (juvenile medusae); but one species within Pelagiidae, Pelagia noctiluca, spends its whole life in the water column, developing from a larva directly into an ephyra.

View Article and Find Full Text PDF

Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri.

View Article and Find Full Text PDF