Publications by authors named "Tinya J Abrams"

The cell surface glycoprotein P-cadherin is highly expressed in a number of malignancies, including those arising in the epithelium of the bladder, breast, esophagus, lung, and upper aerodigestive system. PCA062 is a P-cadherin specific antibody-drug conjugate that utilizes the clinically validated SMCC-DM1 linker payload to mediate potent cytotoxicity in cell lines expressing high levels of P-cadherin , while displaying no specific activity in P-cadherin-negative cell lines. High cell surface P-cadherin is necessary, but not sufficient, to mediate PCA062 cytotoxicity.

View Article and Find Full Text PDF

Purpose: SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development.

Experimental Design: The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRASi, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models and , and their effects on downstream signaling were examined.

View Article and Find Full Text PDF

, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells and using cell line xenografts and primary human tumors. , sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids.

View Article and Find Full Text PDF

Numerous lines of evidence suggest that the polypeptide hormone prolactin (PRL) may contribute to breast and prostate tumorigenesis through its interactions with the prolactin receptor (PRLR). Here, we describe the biologic properties of LFA102, a humanized neutralizing monoclonal antibody directed against the extracellular domain of PRLR. This antibody was found to effectively antagonize PRL-induced signaling in breast cancer cells in vitro and in vivo and to block PRL-induced proliferation in numerous cell line models, including examples of autocrine/paracrine PRL activity.

View Article and Find Full Text PDF

Purpose: The ectopically expressed and deregulated fibroblast growth factor receptor 3 (FGFR3) results from a t(4;14) chromosomal translocation that occurs in approximately 15% of multiple myeloma (MM) patients and confers a particularly poor prognosis. This study assesses the antimyeloma activity of CHIR-258, a small-molecule inhibitor of multiple receptor tyrosine kinases that is currently in phase I trials, in a newly developed FGFR3-driven preclinical MM animal model.

Experimental Design: We developed an orthotopic MM model in mice using a luciferase-expressing human KMS-11-luc line that expresses mutant FGFR3 (Y373C).

View Article and Find Full Text PDF

The aim of the study was to investigate inhibitory effects of the receptor tyrosine kinase (RTK) inhibitor SU11248 against CSF-1R and osteoclast (OC) formation. We developed an in vivo model of breast cancer metastasis to evaluate efficacy of SU11248 against tumor growth and tumor-induced osteolysis in bone. The in vitro effects of SU11248 on CSF-1R phosphorylation, OC formation and function were evaluated.

View Article and Find Full Text PDF

SU11248 is an oral multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activities through targeting platelet-derived growth factor receptor, vascular endothelial growth factor receptor, KIT, and FLT3, the first three of which are expressed in human breast cancer and/or its supporting tissues. The purpose of the present studies was to demonstrate the potent anticancer activity of SU11248 alone or in combination with conventional cytotoxic agents against several distinct preclinical models of breast cancer. SU11248 was administered as a monotherapy to (1) mouse mammary tumor virus-v-Ha-ras mice and 7,12-dimethylbenz(a)anthracene-treated rats bearing mammary tumors and (2) mice bearing human breast cancer xenografts of s.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the activity of the indolinone kinase inhibitor SU11248 against the receptor tyrosine kinase KIT in vitro and in vivo, examine the role of KIT in small cell lung cancer (SCLC), and anticipate clinical utility of SU11248 in SCLC. SU11248 is an oral, multitargeted tyrosine kinase inhibitor with direct antitumor and antiangiogenic activity through targeting platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor, KIT, and FLT3 receptors. Treatment of the KIT-expressing SCLC-derived NCI-H526 cell line in vitro with SU11248 resulted in dose-dependent inhibition of stem cell factor-stimulated KIT phosphotyrosine levels and proliferation.

View Article and Find Full Text PDF

One challenging aspect in the clinical development of molecularly targeted therapies, which represent a new and promising approach to treating cancers, has been the identification of a biologically active dose rather than a maximum tolerated dose. The goal of the present study was to identify a pharmacokinetic/pharmacodynamic relationship in preclinical models that could be used to help guide selection of a clinical dose. SU11248, a novel small molecule receptor tyrosine kinase inhibitor with direct antitumor as well as antiangiogenic activity via targeting the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases, was used as the pharmacological agent in these studies.

View Article and Find Full Text PDF

FLT3 (fms-related tyrosine kinase/Flk2/Stk-2) is a receptor tyrosine kinase (RTK) primarily expressed on hematopoietic cells. In blasts from acute myelogenous leukemia (AML) patients, 2 classes of FLT3 activating mutations have been identified: internal tandem duplication (ITD) mutations in the juxtamembrane domain (25%-30% of patients) and point mutations in the kinase domain activation loop (7%-8% of patients). FLT3-ITD mutations are the most common molecular defect identified in AML and have been shown to be an independent prognostic factor for decreased survival.

View Article and Find Full Text PDF

The PML-RAR alpha fusion protein is central to the pathogenesis of acute promyelocytic leukemia (APL). Expression of this protein in transgenic mice initiates myeloid leukemias with features of human APL, but only after a long latency (8.5 months in MRP8 PML-RARA mice).

View Article and Find Full Text PDF