RNA polymerase mitochondrial (POLRMT) expression and the potential biological functions in skin squamous cell carcinoma (SCC) were explored. We showed that POLRMT is significantly elevated in skin SCC. Genetic depletion of POLRMT, using shRNA-induced knockdown or CRISPR/Cas9-mediated knockout (KO), resulted in profound anti-skin SCC cell activity.
View Article and Find Full Text PDFBridged tetracyclic nitrogen scaffolds are found in numerous biologically active molecules and medicinally relevant structures. Traditional methods usually require tedious reaction steps, and/or the use of structurally specific starting materials. We report an unprecedented, iminyl radical-triggered relay annulation from oxime-derived peresters and azadienes, which shows good substrate scope and functional group compatibility, and can deliver various bridged aza-tetracyclic compounds with complex molecular topology and four contiguous stereogenic centers (dr > 19 : 1) in a single operation.
View Article and Find Full Text PDFIn the presence of a copper catalyst, a series of oximes undergo deconstructive insertion into coumarins to afford structurally interesting dihydrobenzofuran-fused pyridones in moderate to good yields with good functional group compatibility. The reaction likely involves a radical relay annulation, leading to the ring opening of the lactone moiety of the coumarins, and simultaneous formation of three new bonds. The investigation of photoluminescent properties reveals that several obtained compounds may have potential as fluorescent materials.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2022
Pot experiments were conducted to evaluate plant contribution during remediation of the polycyclic aromatic hydrocarbons (PAH)-contaminated soil of Dagang Oilfield by Fire Phoenix (a mixture of Festuca L.). The results showed that Fire Phoenix could grow in soil contaminated by high and low concentrations of PAHs.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2021
In this study, three dominant bacteria (Ⅰ), (Ⅱ), (Ⅲ) from Fire Phoenix rhizosphere soil were used to develop a multi-microbial agent system. For oil-contaminated soil in the Dagang oilfield, the immobilized test bacteria were inoculated into the Fire Phoenix rhizosphere soil to examine the effects of bacterial agents on polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. The results showed that PAHs degradation was promoted under the ⅠⅢ (with an effective number of viable bacteria of 10 cfu·mL) and ⅠⅡⅢ (with an effective number of viable bacteria of 10 cfu·mL) treatments.
View Article and Find Full Text PDFThe development of hydrogels that support vascularization to improve the survival of skin flaps, yet establishing homogeneous angiogenic niches without compromising the ease of use in surgical settings remains a challenge. Here, pressure-driven spreadable hydrogels were developed utilizing beta-sheet rich silk nanofiber materials. These silk nanofiber-based hydrogels exhibited excellent spreading under mild pressure to form a thin coating to cover all the regions of the skin flaps.
View Article and Find Full Text PDFAlterations of aroma properties and aroma-related attributes of sugarcane juice during thermal processing under different temperatures (90, 100, and 110 ℃) and treating time (10 s, 20 s, and 30 s) were assessed in this study. Changes in the volatility of aroma compounds were extremely complicated and respected to thermal processing conditions. Fructose, serine, and glutanic acid of sugarcane juice were increased at first and decreased at the end of treatment at high temperature.
View Article and Find Full Text PDFCell membrane cloaking is an emerging field in drug delivery in which specific functions of parent cells are conferred to newly formed biomimetic vehicles. A growing variety of delivery systems with diverse surface properties have been utilized for this strategy, but it is unclear whether the affinity of membrane-core pairs could guarantee effective and proper camouflaging. In this study, we propose a concise and effective "molecular affinity" strategy using the intracellular domain of transmembrane receptors as "grippers" during membrane coating.
View Article and Find Full Text PDF