Publications by authors named "Tingyu Lv"

Intermittent theta burst stimulation, a derivative of repetitive transcranial magnetic stimulation, has been applied to improve cognitive deficits. However, its efficacy and mechanisms in enhancing cognitive function in patients with amnestic mild cognitive impairment compared with traditional repetitive transcranial magnetic stimulation paradigms remain unclear. This study recruited 48 amnestic mild cognitive impairment patients, assigning them to intermittent theta burst stimulation, repetitive transcranial magnetic stimulation, and sham groups (5 times/wk for 4 wk).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how repetitive transcranial magnetic stimulation (rTMS) influences neuroplasticity in older adults with cognitive impairment, particularly focusing on its effects on sleep disorders and Alzheimer's disease (AD).
  • Forty-six elderly participants with varying sleep qualities underwent neuronavigated rTMS and neuroimaging, revealing that those with low sleep quality showed different neuroplastic changes linked to gene pathways impacting episodic memory.
  • This research highlights the complex relationship between sleep quality, rTMS, and gene expression in enhancing cognitive function, offering a new way to understand the biological mechanisms in AD patients.
View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation is used in early-stage Alzheimer's disease to slow progression, but heterogeneity in response results in different treatment outcomes. The mechanisms underlying this heterogeneity are unclear. This study used resting-state neuroimaging to investigate the variability in episodic memory improvement from angular gyrus repetitive transcranial magnetic stimulation and tracked the neural circuits involved.

View Article and Find Full Text PDF

Introduction: Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) of the left angular gyrus has been broadly investigated for the treatment of amnestic mild cognitive impairment (aMCI). Although abnormalities in two hippocampal networks, the anterior-temporal (AT) and posterior-medial (PM) networks, are consistent with aMCI and are potential therapeutic targets for rTMS, the underlying mechanisms of the therapeutic effects of rTMS on hippocampal network connections remain unknown. Here, we assessed the impact of left angular gyrus rTMS on activity in these networks and explored whether the treatment response was due to the distance between the clinically applied target (the group average optimal site) and the personalized target in patients with aMCI.

View Article and Find Full Text PDF

Background: Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is potentially effective in enhancing cognitive performance in the spectrum of Alzheimer's disease (AD). We explored the effect of rTMS-induced network reorganization and its predictive value for individual treatment response.

Methods: Sixty-two amnestic mild cognitive impairment (aMCI) and AD patients were recruited.

View Article and Find Full Text PDF

Study Objectives: By examining spontaneous activity changes of sleep-related networks in patients with the Alzheimer's disease (AD) spectrum with or without insomnia disorder (ID) over time via neuro-navigated repetitive transcranial magnetic stimulation (rTMS), we revealed the effect and mechanism of rTMS targeting the left-angular gyrus in improving the comorbidity symptoms of the AD spectrum with ID.

Methods: A total of 34 AD spectrum patients were recruited in this study, including 18 patients with ID and the remaining 16 patients without ID. All of them were measured for cognitive function and sleep by using the cognitive and sleep subscales of the neuropsychiatric inventory.

View Article and Find Full Text PDF

Default-mode network (DMN) may be the earliest affected network and is associated with cognitive decline in Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) may help to modulate DMN plasticity. Still, stimulation effects substantially vary across studies and individuals.

View Article and Find Full Text PDF