Publications by authors named "Tingxiang Qi"

The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth.

View Article and Find Full Text PDF

Background: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress.

Results: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rfrf)] and SH [S(Rfrf)] with obvious differences in fertility stability under HT stress at two environments.

View Article and Find Full Text PDF

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs).

View Article and Find Full Text PDF

Dose effects of Rf gene regulated retrieval mechanism of pollen fertility for CMS-D2 cotton. Cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) is an economical pollination control system for producing hybrid cotton seeds compared to artificial and chemical emasculation methods. However, the unstable restoring ability of restorer lines is a main barrier in the large-scale application of "three-line" hybrid cotton in China.

View Article and Find Full Text PDF

Resolving the genetic basis of fertility restoration for cytoplasmic male sterility (CMS) can improve the efficiency of three-line hybrid breeding. However, the genetic determinants of male fertility restoration in cotton are still largely unknown. This study comprehensively compared the full-length transcripts of CMS-D2 and CMS-D8 systems to identify potential genes linked with fertility restorer genes or .

View Article and Find Full Text PDF

Over the last decade, two-photon microscopy (TPM) has been the technique of choice for in vivo noninvasive optical brain imaging for neuroscientific study or intra-vital microendoscopic imaging for clinical diagnosis or surgical guidance because of its intrinsic capability of optical sectioning for imaging deeply below the tissue surface with sub-cellular resolution. However, most of these research activities and clinical applications are constrained by the bulky size of traditional TMP systems. An attractive solution is to develop miniaturized TPMs, but this is challenged by the difficulty of the integration of dynamically scanning optical and mechanical components into a small space.

View Article and Find Full Text PDF

Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G.

View Article and Find Full Text PDF

Using cytoplasmic male sterility of (CMS-D2) is an economical and effective method to produce cotton hybrids. However, the detrimental cytoplasmic effects of CMS-D2 on pollen fertility and fiber yields greatly limit the further development of three-line hybrid cotton in China. In this study, an integrated non-targeted metabolomics and transcriptome analysis was performed on mature pollens of maintainer line NB, isonuclear alloplasmic near-isogenic restorer lines NH and SH under two environments.

View Article and Find Full Text PDF

Hybrid utilization has proficiently increased crop production worldwide. The cytoplasmic male sterility (CMS) system has emerged as an efficient tool for commercial hybrid cotton seed production. The restorer line with dominant gene can restore the fertility of the CMS-D8 sterile line.

View Article and Find Full Text PDF

Hybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton.

View Article and Find Full Text PDF

Heterosis refers to the superior phenotypes observed in hybrids. Cytoplasmic male sterility (CMS) system plays an important role in cotton heterosis utilization. However, the global gene expression patterns of CMS-D2 and its interaction with the restorer gene Rf1 remain unclear.

View Article and Find Full Text PDF

Background: Cytoplasmic male sterile (CMS) with cytoplasm from Gossypium Trilobum (D8) fails to produce functional pollen. It is useful for commercial hybrid cotton seed production. The restore line of CMS-D8 containing Rf gene can restore the fertility of the corresponding sterile line.

View Article and Find Full Text PDF

Background: Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs.

Results: In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations.

View Article and Find Full Text PDF

Background: Heterosis breeding is the most useful method for yield increase around the globe. Heterosis is an intriguing process to develop superior offspring to either parent in the desired character. The biomass vigor produced during seedling emergence stage has a direct influence on yield heterosis in plants.

View Article and Find Full Text PDF

The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized with Rf and Rf as the restorer genes, respectively. The development of molecular markers tightly linked with restorer genes can facilitate the breeding of restorer lines.

View Article and Find Full Text PDF

DNA methylation is an important epigenetic modification involved in multiple biological processes. Altered methylation patterns have been reported to be associated with male sterility in some plants, but their role in cotton cytoplasmic male sterility (CMS) remains unclear. Here, integrated methylome and transcriptome analyses were conducted between the CMS-D2 line ZBA and its near-isogenic maintainer line ZB in upland cotton.

View Article and Find Full Text PDF

The cytoplasmic male sterility (CMS)/restorer-of-fertility system is an important tool to exploit heterosis during commercially hybrid seed production. The importance of long noncoding RNAs (lncRNAs) in plant development is recognized, but few analyses of lncRNAs during anther development of three-line hybrid cotton (CMS-D2 line A, maintainer line B, restorer-of-fertility line R) have been reported. Here, we performed transcriptome sequencing during anther development in three-line hybrid cotton.

View Article and Find Full Text PDF

Anther development in flowering plants is highly sensitive to high-temperature (HT) stress. Understanding the potential epigenetic mechanism of anther infertility induced by HT stress in cotton (Gossypium hirsutum L.) is crucial for the effective use of genetic resources to guide plant breeding.

View Article and Find Full Text PDF
Article Synopsis
  • Cytoplasmic male sterility (CMS) in flowering plants results from mitochondrial-nuclear genome incompatibility, with restorer-of-fertility (Rf) nuclear genes potentially restoring fertility, specifically in cotton where the mechanisms are not fully understood.
  • A study using small RNA and transcriptome sequencing on hybrid cotton identified differentially expressed microRNAs (DEMs) linked to CMS and fertility restoration, revealing a regulatory network for anther development.
  • The research highlights how specific microRNAs interact with target genes to influence fertility restoration in cotton, providing valuable information for future hybrid breeding efforts.
View Article and Find Full Text PDF

Background: Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.

View Article and Find Full Text PDF

The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily.

View Article and Find Full Text PDF