Publications by authors named "Tingxi Guo"

Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving β cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC).

View Article and Find Full Text PDF

The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8 T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies demonstrate the clinical potential of lymphocytes engineered with synthetic properties. However, CAR-T cells are ineffective in most solid tumors, partly due to inadequate activation of the infused lymphocytes at the site of malignancy. To selectively enhance antitumor efficacy without exacerbating off-target toxicities, CAR-T cells can be engineered to preferentially deliver immunostimulatory payloads in tumors.

View Article and Find Full Text PDF
Article Synopsis
  • - Synthetic biology is revolutionizing cell and gene therapies for various diseases by engineering cells to target disease signals while protecting healthy tissue from damage.
  • - The Keystone eSymposium held in May 2021 focused on the therapeutic applications of synthetic biology, highlighting its advancement into clinical trials and its potential impact on human health.
  • - Presentation topics included enhancing T cell therapies, gene therapies, viral therapies, and innovating probiotics and other cell-based therapy methods.
View Article and Find Full Text PDF

The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development.

View Article and Find Full Text PDF

Peptide-major histocompatibility complex (pMHC) multimers enable the detection of antigen-specific T cells in studies ranging from vaccine efficacy to cancer immunotherapy. However, this technology is unreliable when applied to pMHC class II for the detection of CD4 T cells. Here, using a combination of molecular biological and immunological techniques, we cloned sequences encoding human leukocyte antigen (HLA)-DP, HLA-DQ and HLA-DR molecules with enhanced CD4 binding affinity (with a K of 8.

View Article and Find Full Text PDF

Adoptive immunotherapy can induce sustained therapeutic effects in some cancers. Antitumor T-cell grafts are often individually prepared from autologous T cells, which requires an intensive workload and increased costs. The quality of the generated T cells can also be variable, which affects the therapy's antitumor efficacy and toxicity.

View Article and Find Full Text PDF

HLA-restricted T cell responses can induce antitumor effects in cancer patients. Previous human T cell research has largely focused on the few HLA alleles prevalent in a subset of ethnic groups. Here, using a panel of newly developed peptide-exchangeable peptide/HLA multimers and artificial antigen-presenting cells for 25 different class I alleles and greater than 800 peptides, we systematically and comprehensively mapped shared antigenic epitopes recognized by tumor-infiltrating T lymphocytes (TILs) from eight melanoma patients for all their class I alleles.

View Article and Find Full Text PDF

Recent work has delineated key differences in the antigen processing and presentation mechanisms underlying HLA-DP alleles encoding glycine at position 84 of the DPβ chain (DP). These DPs are unable to associate with the class II-associated Ii peptide (CLIP) region of the invariant chain (Ii) chaperone early in the endocytic pathway, leading to continuous presentation of endogenous antigens. However, little is known about the chaperone support involved in the loading of these endogenous antigens onto DP molecules.

View Article and Find Full Text PDF

Forkhead box transcription factor 3 (FOXP3) plays a pivotal role in the suppressive function of regulatory T cells. In addition to mRNA levels, FOXP3 activity can also be controlled by posttranslational mechanisms, which have not been studied in a comprehensive manner. Through extensive screening using selective inhibitors, we demonstrate that the inhibition of type I protein arginine methytransferases (PRMTs) attenuates the suppressive functions of regulatory T cells.

View Article and Find Full Text PDF

Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms.

View Article and Find Full Text PDF

While the principles of classical antigen presentation via MHC class II are well-established, the mechanisms for the many routes of cross-presentation by which endogenous antigens become associated with class II molecules are not fully understood. We have recently demonstrated that the single amino acid polymorphism HLA-DPβ (DP) is critical to abrogate class II invariant chain associated peptide (CLIP) region-mediated binding of invariant chain (Ii) to DP, allowing endoplasmic reticulum (ER)-resident endogenous antigens to constitutively associate with DP such as DP4. In this study, we demonstrate that both the CLIP and N-terminal non-CLIP Ii regions cooperatively generate an Ii conformation that cannot associate with DP via the CLIP region.

View Article and Find Full Text PDF

The adoptive transfer of T cells engineered with a chimeric antigen receptor (CAR) (hereafter referred to as CAR-T cells) specific for the B lymphocyte antigen CD19 has shown impressive clinical responses in patients with refractory B cell malignancies. However, the therapeutic effects of CAR-T cells that target other malignancies have not yet resulted in significant clinical benefit. Although inefficient tumor trafficking and various immunosuppressive mechanisms can impede CAR-T cell effector responses, the signals delivered by the current CAR constructs may still be insufficient to fully activate antitumor T cell functions.

View Article and Find Full Text PDF
Article Synopsis
  • A significant portion of T cells in humans can recognize lipids presented by CD1 proteins, and recent research focuses on the interaction between mycobacterial lipids and CD1c-restricted T cells, including their role in autoimmunity and cancer.
  • Utilizing an artificial antigen-presenting cell (aAPC) system, researchers isolated and characterized autoreactive CD1c-restricted T cells, confirming their activation through specific recognition of endogenous lipids.
  • The study identified key residues in the T cell receptor (TCR) that are crucial for autoreactivity, shedding light on the molecular characteristics and diversity of these autoreactive T cells.
View Article and Find Full Text PDF

Classical antigen processing leads to the presentation of antigenic peptides derived from endogenous and exogenous sources for MHC class I and class II molecules, respectively. Here we show that, unlike other class II molecules, prevalent HLA-DP molecules with β-chains encoding Gly84 (DP) constitutively present endogenous peptides. DP does not bind invariant chain (Ii) via the class II-associated invariant chain peptide (CLIP) region, nor does it present CLIP.

View Article and Find Full Text PDF

Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy.

View Article and Find Full Text PDF

The human invariant NK (iNK) TCR is largely composed of the invariant TCR Vα24-Jα18 chain and semivariant TCR Vβ11 chains with variable CDR3β sequences. The direct role of CDR3β in Ag recognition has been studied extensively. Although it was noted that CDR3β can interact with CDR3α, how this interaction might indirectly influence Ag recognition is not fully elucidated.

View Article and Find Full Text PDF

T cell receptors (TCRs) are used clinically to direct the specificity of T cells to target tumors as a promising modality of immunotherapy. Therefore, cloning TCRs specific for various tumor-associated antigens has been the goal of many studies. To elicit an effective T cell response, the TCR must recognize the target antigen with optimal affinity.

View Article and Find Full Text PDF

Adoptive immunotherapy is a potentially curative therapeutic approach for patients with advanced cancer. However, the in vitro expansion of antitumor T cells prior to infusion inevitably incurs differentiation towards effector T cells and impairs persistence following adoptive transfer. Epigenetic profiles regulate gene expression of key transcription factors over the course of immune cell differentiation, proliferation, and function.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described.

View Article and Find Full Text PDF

Recent high throughput sequencing analysis has revealed that the TCRβ repertoire is largely different between CD8(+) and CD4(+) T cells. Here, we show that the transduction of SIG35α, the public chain-centric HLA-A*02:01(A2)/MART127-35 TCRα hemichain, conferred A2/MART127-35 reactivity to a substantial subset of both CD8(+) and CD4(+) T cells regardless of their HLA-A2 positivity. T cells individually reconstituted with SIG35α and different A2/MART127-35 TCRβ genes isolated from CD4(+) or CD8(+) T cells exhibited a wide range of avidity.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection.

View Article and Find Full Text PDF

Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies.

View Article and Find Full Text PDF

Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes.

View Article and Find Full Text PDF