Photosynthetic bacteria (PSB) has shown significant potential as a drug or drug delivery system owing to their photothermal capabilities and antioxidant properties. Nevertheless, the actualization of their potential is impeded by inherent constraints, including their considerable size, heightened immunogenicity and compromised biosafety. Conquering these obstacles and pursuing more effective solutions remains a top priority.
View Article and Find Full Text PDFTumor immunotherapy hold great promise for eradicating tumors. However, immune escape and the immunosuppressive microenvironment of tumor usually limit the efficiency of tumor immunotherapy. Therefore, simultaneously blocking immune escape and improving immunosuppressive microenvironment are the current problems to be solved urgently.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Oxygen plays an important role in diabetic chronic wound healing by regulating various life activities such as cell proliferation, migration, and angiogenesis. Therefore, oxygen-delivering systems have drawn much attention and evolved continuously. Here, we propose that an active (Cv)-loaded separable microneedle (MN) can be used to control oxygen delivery, which then promotes wound healing.
View Article and Find Full Text PDFBackground: As an antioxidant, hydrogen (H) can selectively react with the highly toxic hydroxyl radical (·OH) in tumor cells to break the balance of reactive oxygen species (ROS) and cause oxidative stress. However, due to the high diffusibility and storage difficulty of hydrogen, it is impossible to achieve long-term release at the tumor site, which highly limited their therapeutic effect.
Results: Photosynthetic bacteria (PSB) release a large amount of hydrogen to break the balance of oxidative stress.
The low sensitivity of hypoxic regions in solid tumors to radiotherapy and chemotherapy remains a major obstacle to cancer treatment. By taking advantage of hypoxic-activated prodrugs, tirapazamine (TPZ), generating cytotoxic reductive products and the glucose oxidase (GO)-based glucose oxidation reaction, we designed a nanodrug-loading system that combined TPZ-induced chemotherapy with GO-mediated cancer-orchestrated starvation therapy and cancer oxidation therapy. In this work, we first prepared mesoporous silica (MSN) loaded with TPZ.
View Article and Find Full Text PDFTreating wounds with multidrug-resistant bacterial infections remains a huge and arduous challenge. In this work, we prepared a "live-drug"-encapsulated hydrogel dressing for the treatment of multidrug-resistant bacterial infections and full-thickness skin incision repair. Our live dressing was comprised of photosynthetic bacteria (PSB) and extracellular matrix (ECM) gel with photothermal, antibacterial and antioxidant properties, as well as good cytocompatibility and blood compatibility.
View Article and Find Full Text PDF