Publications by authors named "Tingrun Lai"

Lithium-ion batteries (LIBs) are extensively used everywhere today due to their prominent advantages. However, the safety issues of LIBs such as fire and explosion have been a serious concern. It is important to focus on the root causes of safety accidents in LIBs and the mechanisms of their development.

View Article and Find Full Text PDF

Developing an efficient method for chloramphenicol (CAP) detection is of great significance for food safety. Arginine (Arg) was selected as a functional monomer. Benefiting from its excellent electrochemical performance, which is different from traditional functional monomers, it can be combined with CAP to form a highly selective molecularly imprinted polymer (MIP) material.

View Article and Find Full Text PDF

High sensitivity and ultra-trace detection of imidacloprid are important and challenging in the field of food. In this study, we prepared a Fe-rich FeCoNi-MOF in-situ modified nickel foam working electrode by one-step hydrothermal method, and achieved a highly sensitive detection of the imidacloprid. The characterization techniques confirmed that Fe-rich FeCoNi-MOF had excellent crystallinity, tighter structure, and exposed rich active sites.

View Article and Find Full Text PDF

The excessive use of imidacloprid in agricultural production leads to a large number of residues that seriously threaten human health. Therefore, the detection of imidacloprid has become very important. But how to quantitatively detect imidacloprid at ultra-low levels is the main challenges.

View Article and Find Full Text PDF

Due to the poor conductivity of Fe based, Cu based and Co based electrode materials commonly used in the electrochemical detection of glucose, and the uneven stirring and poor conductivity of the traditional preparation method based on glassy carbon electrode. In order to solve the above problems, in this work, CdInOwith high electrical conductivity was directly grown on three-dimensional (3D) Ni foam to prepare electrode materials for non-enzymatic glucose sensors. CdInOnanoparticles is prepared from cadmium acetate and indium nitrate hydrate in benzyl alcohol by non-aqueous sol-gel method.

View Article and Find Full Text PDF