Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone (SVZ) throughout life, responding to various pathophysiological stimuli and playing a crucial role in central nervous system repair. Although numerous studies have elucidated the role of stanniocalcin 2 (STC2) in regulating cell differentiation processes, its specific function in NSPCs differentiation remains poorly understood. Clarifying the role of STC2 in NSPCs is essential for devising novel strategies to enhance the intrinsic potential for brain regeneration postinjury.
View Article and Find Full Text PDFNeural stem/progenitor cells (NSPCs) hold immense promise in clinical applications, yet the harsh conditions resulting from central nervous system (CNS) injuries, particularly oxidative stress, lead to the demise of both native and transplanted NSPCs. Cellular communication network factor 3 (CCN3) exhibits a protective effect against oxidative stress in various cell types. This study investigates the impact of CCN3 on NSPCs apoptosis induced by oxidative stress.
View Article and Find Full Text PDFObjectives: We aimed to investigate the role of soluble epoxide hydrolase for hyperglycemia induced-disruption of blood-brain barrier (BBB) integrity after diffuse axonal injury (DAI).
Methods: Rat DAI hyperglycemia model was established by a lateral head rotation device and intraperitoneal injection of 50% glucose. Glial fibrillary acidic protein, ionized calcium-binding adapter molecule-1, β-amyloid precursor protein, neurofilament light chain, and neurofilament heavy chain was detected by immunohistochemistry.
Background And Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is the leading cause of death in young adults and the main cause of mortality and disability across all ages worldwide. We previously analyzed the expression profile data of TBI models obtained from the Gene Expression Omnibus (GEO) database and found that the seripina3n mRNA was markedly upregulated in the acute phase of TBI in four mRNA expression profile data sets, indicating that serpina3n may be involved in the pathophysiological process of TBI. Therefore, we further investigated the biological role and molecular mechanism of serpina3n in traumatic brain injury in this study.
View Article and Find Full Text PDFHyperglycemia aggravates brain damage after diffuse axonal injury (DAI), but the underlying mechanisms are not fully defined. In this study, we aimed to investigate a possible role for hyperglycemia in the disruption of blood-brain barrier (BBB) integrity in a rat model of DAI and the underlying mechanisms. Accordingly, 50% glucose was intraperitoneally injected after DAI to establish the hyperglycemia model.
View Article and Find Full Text PDFBlood-brain barrier (BBB) disruption exacerbates diffuse axonal injury (DAI), but the underlying mechanisms are not fully understood. Inactivation or deletion of erythropoietin-producing hepatoma (EPH) receptor A2 (EphA2) attenuated BBB damage and promoted tight junction formation. In this study, we aimed to investigate the role of EphA2 in the protection of BBB integrity and the relevant mechanisms involved in a rat model of DAI.
View Article and Find Full Text PDFIncreasing evidence has revealed that neuroinflammation plays a pivotal role in axonal injures. Nucleotide oligomerization domain (NOD)-like receptor protein (NLRP3) inflammasome is reported to be widely involved with the pathology of central nervous system disorders. But the role of NLRP3 in diffuse axonal injury (DAI) are rarely reported.
View Article and Find Full Text PDFTraumatic brain injury (TBI) causes substantial mortality and long-term disability worldwide. TGFβ1 is a unique molecular and functional signature in microglia, but the role of TGFβ1 in TBI is not clear. The purpose of this study was to investigate the role of TGFβ1 in TBI.
View Article and Find Full Text PDFObjective: This study aimed to explore the association between genetic variations of CYP19A1 and stroke susceptibility in the Chinese Han population.
Methods: A total of 477 stroke patients and 480 healthy controls were recruited in this study. The genotyping of CYP19A1 polymorphisms (rs4646, rs6493487, rs1062033, rs17601876, and rs3751599) was performed by the Agena MassARRAY platform.
Purpose: Glioma is the most common primary malignant brain tumor with high mortality and poor prognosis. Our aim was to clarify the correlation between Kinase-anchored protein 6 (AKAP6) gene polymorphisms and glioma susceptibility and prognosis in Chinese Han population.
Methods: Five single-nucleotide polymorphisms (SNPs) of AKAP6 were genotyped by Agena MassARRAY in 575 glioma patients and 500 healthy controls.
Background: Abnormal expression of the mastermind-like transcriptional co-activator 2 (MAML2) gene is oncogenic in several human cancers, including glioma. However, the relevance of MAML2 variants with glioma remains unknown. We aimed to investigate the role of MAML2 polymorphisms in glioma risk and prognosis among the Chinese Han population.
View Article and Find Full Text PDFTissue plasminogen activator is usually used for the treatment of acute ischemic stroke, but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported. A rat model of traumatic brain injury was established by weight-drop method. The tissue plasminogen activator inhibitor neuroserpin (5 μL, 0.
View Article and Find Full Text PDFBackground: Ischemic stroke (IS) is a serious cardiovascular disease and is associated with several single nucleotide polymorphisms (SNPs). However, the role of Cytochrome P450 family 4 subfamily F member 2 (CYP4F2) gene in IS remains unknown. Our study aimed to explore whether CYP4F2 polymorphisms influenced IS risk in the Han Chinese population.
View Article and Find Full Text PDFTraumatic brain in jury affects a number of individuals per year and is a major cause of worldwide death and disability. Yet, its pathophysiological mechanism remains unclear. It is well-known that glial cells, including microglia and astrocytes, are activated and involved in tissue damage and repair in the peri-lesion regions after traumatic brain injury; however, global glial responses are rarely reported.
View Article and Find Full Text PDFOur early experiments confirmed that rosiglitazone (RSG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, had therapeutic potential for the treatment of diffuse axonal injury (DAI) by inhibiting the expression of amyloid-beta precursor protein and reducing the loss and abnormal phosphorylation of tau, but the underlying mechanisms were not fully defined. In this study, we aimed to investigate a possible role for PPARγ in the protection of blood-brain barrier (BBB) integrity in a rat model of DAI, and the underlying mechanisms. PPAR agonists and antagonists were intraperitoneally injected after DAI.
View Article and Find Full Text PDFDiffuse axonal injury (DAI) accounts for more than 50% of all traumatic brain injury. In response to the mechanical damage associated with DAI, the abnormal proteins produced in the neurons and axons, namely, β-APP and p-tau, induce endoplasmic reticulum (ER) stress. Curcumin, a major component extracted from the rhizome of Curcuma longa, has shown potent anti-inflammatory, antioxidant, anti-infection, and antitumor activity in previous studies.
View Article and Find Full Text PDFHigh mobility group box 1 (HMGB1) is a classic damage-associated molecular pattern that has an important role in the pathological inflammatory response. studies have demonstrated that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is involved in the regulation of HMGB1 expression, mediating the inflammatory response. Therefore, the purpose of the present study was to evaluate JAK2/STAT3 pathway involvement in the subarachnoid hemorrhage (SAH)-dependent regulation of HMGB1, using an rat model.
View Article and Find Full Text PDFEarly brain injury (EBI) plays a key role in determining the prognosis of patients suffering from subarachnoid hemorrhage (SAH). Resveratrol, a natural polyphenol, serves a neuroprotection function on EBI after SAH. However, the potential mechanism of resveratrol on EBI remains to be elucidated.
View Article and Find Full Text PDFDiffuse axonal injury (DAI) is the most common and significant pathological features of traumatic brain injury (TBI). However, there are still no effective drugs to combat the formation and progression of DAI in affected individuals. FK506, also known as tacrolimus, is an immunosuppressive drug, which is widely used in transplantation medicine for the reduction of allograft rejection.
View Article and Find Full Text PDFTreatment of diffuse axonal injury (DAI) remains challenging in clinical practice due to the unclear pathophysiological mechanism. Uncontrolled, excessive inflammation is one of the most recognized mechanisms that contribute to the secondary injury after DAI. Toll like receptor 2 (TLR2) is highlighted for the initiation of a vicious self-propagating inflammatory circle.
View Article and Find Full Text PDFInterleukin-10 (IL-10) and DNA repair gene PRKDC mutations are implicated in the development of multiple human cancers, including glioma. We investigated associations between IL-10 and PRKDC gene polymorphisms and prognosis in low- and high-grade glioma patients. We analyzed the associations of one IL-10 and one PRKDC single nucleotide polymorphism with patient clinical factors in 481 glioma patients using Cox proportional hazard models and Kaplan-Meier curves.
View Article and Find Full Text PDFIncreasing evidence suggests that secondary injury after diffuse axonal injury (DAI) damages more axons than the initial insult, but the underlying mechanisms of this phenomenon are not fully understood. Recent studies show that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and have been shown to be associated with brain damage. The purpose of this study was to investigate the role of the TLR4 signalling pathway in secondary axonal injury in the cortices of DAI rats.
View Article and Find Full Text PDFCerebral inflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effects of c-Jun N-terminal kinase (JNK) inhibitor SP600125, acetylcholine (Ach), etanercept, and anti-TNF-α on cellular apoptosis in the cerebral cortex and the hippocampus, in order to establish the role of JNK and TNF-α in EBI. The SAH model was established using an endovascular puncture protocol.
View Article and Find Full Text PDFObjective: To evaluate the efficacy and safety of therapeutic hypothermia in children with acute traumatic brain injury (TBI).
Methods: A systematic literature review using PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, VIP, and Chinese Biomedical Database was performed to retrieve studies of randomized controlled trials (RCTs) on therapeutic hypothermia for children with TBI published before March 2014. Data extraction and quality evaluation of RCTs were performed by 2 investigators independently.