As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. Fe-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.
View Article and Find Full Text PDFThe photo-induced cleavage of C(sp)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence.
View Article and Find Full Text PDFHerein, we describe a soluble iron(II)-phthalocyanine, [Fe(BuPc)(py)] (Pc = phthalocyaninato(2-)), as an effective catalyst in intramolecular C(sp)-H bond amination, with alkyl azides as the nitrogen source, to afford the amination products in moderate to excellent yields with a broad substrate scope.
View Article and Find Full Text PDFDirect C-H bond functionalization catalyzed by non-precious transition metals is an attractive strategy in synthetic chemistry. Compared with the precious metals rhodium, palladium, ruthenium, and iridium commonly used in this field, catalysis based on non-precious metals, especially the earth-abundant ones, is appealing due to the increasing demand for environmentally benign and sustainable chemical processes. Herein, developments in iron- and cobalt-catalyzed C(sp)-H bond functionalization reactions are described, with an emphasis on their applications in organic synthesis, i.
View Article and Find Full Text PDFA facile and efficient synthesis of 1,3-diketones was developed by the gold(i)-catalyzed regioselective hydration of ynones at room temperature. This methodology employed 2.5 mol% of PPh3AuCl and 3 mol% of AgOTf as a simple catalytic system without any special phosphine ligand and was compatible with a wide range of substrates, giving rise to 1,3-diaryl, 1-alkyl-3-aryl-, and 1,3-dialkyl-1,3-diketones in up to quantitative yields in open flask reactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2018
Metal-catalyzed intramolecular C-H amination of alkyl azides constitutes an appealing approach to alicyclic amines; challenges remain in broadening substrate scope, enhancing regioselectivity, and applying the method to natural product synthesis. Herein we report an iron(III) porphyrin bearing axial N-heterocyclic carbene ligands which catalyzes the intramolecular C(sp )-H amination of a wide variety of alkyl azides under microwave-assisted and thermal conditions, resulting in selective amination of tertiary, benzylic, allylic, secondary, and primary C-H bonds with up to 95 % yield. 14 out of 17 substrates were cyclized selectively at C4 to give pyrrolidines.
View Article and Find Full Text PDFA simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.
View Article and Find Full Text PDF