Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates.
View Article and Find Full Text PDFDNA modified with C2'-methoxy (C2'-OMe) greatly enhances its resistance to nucleases, which is beneficial for the half-life of aptamers and DNA nanomaterials. Although the unnatural DNA polymerases capable of incorporating C2'-OMe modified nucleoside monophosphates (C2'-OMe-NMPs) were engineered via directed evolution, the detailed molecular mechanism by which an evolved DNA polymerase recognizes C2'-OMe-NTPs remains poorly understood. Here, we present the crystal structures of the evolved Stoffel fragment of Taq DNA polymerase SFM4-3 processing the C2'-OMe-GTP in different states.
View Article and Find Full Text PDFEfficient preparation of DNA oligonucleotides containing unnatural nucleobases (UBs) that can pair with their cognates to form unnatural base pairs (UBPs) is an essential prerequisite for the application of UBPs in vitro and in vivo. Traditional preparation of oligonucleotides containing unnatural nucleobases largely relies on solid-phase synthesis, which needs to use unstable nucleoside phosphoramidites and a DNA synthesizer, and is environmentally unfriendly and limited in product length. To overcome these limitations of solid-phase synthesis, we developed enzymatic methods for daily laboratory preparation of DNA oligonucleotides containing unnatural nucleobase dNaM, dTPT3, or one of the functionalized dTPT3 derivatives, which can be used for orthogonal DNA labeling or the preparation of DNAs containing UBP dNaM-dTPT3, one of the most successful UBPs to date, based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT).
View Article and Find Full Text PDFThe genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs and , there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions.
View Article and Find Full Text PDFIn the past decades, various xenobiotic nucleic acids (XNAs), including 2'-modified nucleic acids, have been developed as novel genetic materials and demonstrated great potential in synthetic biology and biotechnology. Enzymatic polymerization and replication of these artificial polymers are obviously the prerequisite to make full use of them, and DNA and RNA polymerases from different families have thus been extensively engineered for these purposes. However, the performance of engineered XNA polymerases is still far from satisfactory, especially in terms of the efficiency of synthesizing XNA with bigger lengths and the capability of directly replicating XNAs or transcribing one XNA to another.
View Article and Find Full Text PDFUnnatural base pairs (UBPs) have been developed to expand the genetic alphabet and . UBP dNaM-dTPT3 and its analogues have been successfully used to construct the first set of semi-synthetic organisms, which suggested the great potential of UBPs to be used for producing novel synthetic biological parts. Two prerequisites for doing so are the facile manipulation of DNA containing UBPs with common tool enzymes, including DNA polymerases and ligases, and the easy availability of UBP-containing DNA strands.
View Article and Find Full Text PDFAgrobacterium fabrum has been critical for the development of plant genetic engineering and agricultural biotechnology due to its ability to transform eukaryotic cells. However, the gene composition, evolutionary dynamics, and niche adaptation of this species is still unknown. Therefore, we established a comparative genomic analysis based on a pan-chromosome data set to evaluate the genetic diversity of .
View Article and Find Full Text PDFThermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology.
View Article and Find Full Text PDFDevelopment of unnatural base pairs (UBPs) has significantly expanded the genetic alphabet both and and led to numerous potential applications in the biotechnology and biopharmaceutical industry. Efficient synthesis of oligonucleotides containing unnatural nucleobases is undoubtedly an essential prerequisite for making full use of the UBPs, and synthesis of oligonucleotides with terminal deoxynucleotidyl transferases (TdTs) has emerged as a method of great potential to overcome limitations of traditional solid-phase synthesis. Herein, we report the efficient template-independent incorporation of nucleotides of unnatural nucleobases dTPT3 and dNaM, which have been designed to make one of the most successful UBPs to date, dTPT3-dNaM, into DNA oligonucleotides with a TdT enzyme under optimized conditions.
View Article and Find Full Text PDFNucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts.
View Article and Find Full Text PDFBase excision (BE) is an important yet hard-to-control biological event. Unnatural base pairs are powerful tools to revolutionize biological studies in various areas. In this paper, we report a visible-light-induced method to construct site-specific unnatural BE and show the influence of its regulation on transcription and translation levels.
View Article and Find Full Text PDFNucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives.
View Article and Find Full Text PDFBackbone-modified nucleic acids are usually more stable enzymatically than their natural counterparts, enabling their broad application as potential diagnostic or therapeutic agents. Moreover, the development of nucleic acids with unnatural backbones has expanded the pool of genetic information carriers and paved the way toward synthetic xenobiology. However, synthesizing these molecules remains very challenging due to the requirement for harsh reaction conditions and the low coupling efficiency during their traditional solid-phase synthesis.
View Article and Find Full Text PDFPreviously, we evolved a DNA polymerase, SFM4-3, for the recognition of substrates modified at their 2' positions with a fluoro, -methyl, or azido substituent. Here we use SFM4-3 to synthesize 2'-azido-modified DNA; we then use the azido group to attach different, large hydrophobic groups via click chemistry. We show that SFM4-3 recognizes the modified templates under standard conditions, producing natural DNA and thereby allowing amplification.
View Article and Find Full Text PDFRNA or DNA aptamers with 2'-OMe-modifications have been pursued to increase resistance to nucleases, but have been difficult to identify because the OMe groups ablate polymerase recognition. We recently reported evolution of the thermostable DNA polymerases SFM4-6 and SFM4-9, which enable the efficient "transcription" and "reverse transcription", respectively, of 2'-OMe oligonucleotides. With these polymerases, we now report the first selection of fully 2'-OMe modified aptamers, specifically aptamers that bind human neutrophil elastase (HNE).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2017
The ability to amplify DNA along with its unprecedented sequence control has led to its use for different applications, but all are limited by the properties available to natural nucleotides. We previously reported the evolution of polymerase SFM4-3, which better tolerates 2'-modified substrates. To explore the utility of SFM4-3, we now report the characterization of its recognition of substrates with 2'-azido, 2'-chloro, 2'-amino, or arabinose sugars.
View Article and Find Full Text PDFThere is increasing demand for RNA and modified RNA oligonucleotides, but in contrast to DNA oligonucleotides, they are typically prohibitively expensive to chemically synthesize, and unlike longer RNAs, they are only inefficiently produced by in vitro transcription, especially when modified. To address these challenges, we previously reported the evolution of a thermostable DNA polymerase, SFM4-3, that more efficiently accepts substrates with 2'-substituents. We now show that SFM4-3 efficiently transcribes RNA or 2'-F-modified RNA and that it also efficiently PCR amplifies oligonucleotides of mixed RNA and DNA composition.
View Article and Find Full Text PDFRNA or single-stranded DNA aptamers with 2'-F pyrimidines have been pursued to increase resistance to nucleases, and while it seems likely that these and other modifications, including the modification of purines, could be used to optimize additional properties, this has been much less explored because such aptamers are challenging to discover. Using a thermostable DNA polymerase, SFM4-3, which was previously evolved to accept nucleotides with 2'-modifications, we now report the selection of 2'-F purine aptamers that bind human neutrophil elastase (HNE). Two aptamers were identified, 2fHNE-1 and 2fHNE-2, that bind HNE with reasonable affinity.
View Article and Find Full Text PDFDNA and RNA are remarkable because they can both encode information and possess desired properties, including the ability to bind specific targets or catalyze specific reactions. Nucleotide modifications that do not interfere with enzymatic synthesis are now being used to bestow DNA or RNA with properties that further increase their utility, including phosphate and sugar modifications that increase nuclease resistance, nucleobase modifications that increase the range of activities possible, and even whole nucleobase replacement that results in selective pairing and the creation of unnatural base pairs that increase the information content. These modifications are increasingly being applied both in vitro and in vivo, including in efforts to create semi-synthetic organisms with altered or expanded genetic alphabets.
View Article and Find Full Text PDFThe PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2' positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases.
View Article and Find Full Text PDFWhile adaptive mutations can bestow new functions on proteins via the introduction or optimization of reactive centers, or other structural changes, a role for the optimization of protein dynamics also seems likely but has been more difficult to evaluate. Antibody (Ab) affinity maturation is an example of adaptive evolution wherein the adaptive mutations may be identified and Abs may be raised to specific targets that facilitate the characterization of protein dynamics. Here, we report the characterization of three affinity matured Abs that evolved from a common germline precursor to bind the chromophoric antigen (Ag), 8-methoxypyrene-1,3,6-trisulfonate (MPTS).
View Article and Find Full Text PDFOrganisms are defined by the information encoded in their genomes, and since the origin of life this information has been encoded using a two-base-pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs). We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM), which is efficiently PCR-amplified and transcribed in vitro, and whose unique mechanism of replication has been characterized.
View Article and Find Full Text PDFPolymerases evolved in nature to synthesize DNA and RNA, and they underlie the storage and flow of genetic information in all cells. The availability of these enzymes for use at the bench has driven a revolution in biotechnology and medicinal research; however, polymerases did not evolve to function efficiently under the conditions required for some applications and their high substrate fidelity precludes their use for most applications that involve modified substrates. To circumvent these limitations, researchers have turned to directed evolution to tailor the properties and/or substrate repertoire of polymerases for different applications, and several systems have been developed for this purpose.
View Article and Find Full Text PDF