Open-Set Domain Adaptation (OSDA) is designed to facilitate the transfer of knowledge from a source domain to a target domain, where the class space of the source is a subset of the target. The primary challenge in OSDA is the identification of shared samples in the target domain to achieve domain alignment while effectively segregating private samples in the target domain. In attempts to address this challenge, numerous existing methods leverage weighted classifiers to mitigate the negative transfer issue induced by private classes in the target domain and recognize all these samples as a whole unknown class.
View Article and Find Full Text PDFIEEE Trans Cybern
November 2024
Heterogeneous multiagent systems are characterized by diverse task distributions, which are prevalent in practical scenarios, such as distributed decision making and robotic collaboration. A significant challenge in these systems is the constraint of limited observations, where each agent has access only to partial information. Many studies facilitate information exchange by employing shared parameters among agents.
View Article and Find Full Text PDFThe cultivation of cashew crops carries numerous economic advantages, and countries worldwide that produce this crop face a high demand. The effects of wind speed and wind direction on crop yield prediction using proficient deep learning algorithms are less emphasized or researched. We propose a combination of advanced deep learning techniques, specifically focusing on long short-term memory (LSTM) and random forest models.
View Article and Find Full Text PDFMost current deep learning-based news headline generation models only target domain-specific news data. When a new news domain appears, it is usually costly to obtain a large amount of data with reference truth on the new domain for model training, so text generation models trained by traditional supervised approaches often do not generalize well on the new domain-inspired by the idea of transfer learning, this paper designs a cross-domain transfer text generation method based on domain data distribution alignment, intermediate domain redistribution, and zero-shot learning semantic prototype transduction, focusing on the data problem with no reference truth in the target domain. Eventually, the model can be guided by the most relevant source domain data to generate headlines from the target domain news text through the semantic correlation between source and target domain data during the training process of generating headlines for the target domain news, even without any reference truth of the news headlines in the target domain, which improves the usability of the text generation model in real scenarios.
View Article and Find Full Text PDFWith the rapid development of online social networks, text-communication has become an indispensable part of daily life. Mining the emotion hidden behind the conversation-text is of prime significance and application value when it comes to the government public-opinion supervision, enterprise decision-making, etc. Therefore, in this paper, we propose a text emotion prediction model in a multi-participant text-conversation scenario, which aims to effectively predict the emotion of the text to be posted by target speaker in the future.
View Article and Find Full Text PDFThe typical aim of user matching is to detect the same individuals cross different social networks. The existing efforts in this field usually focus on the users' attributes and network embedding, but these methods often ignore the closeness between the users and their friends. To this end, we present a friend closeness based user matching algorithm (FCUM).
View Article and Find Full Text PDFThe combination of Unmanned Aerial Vehicle (UAV) technologies and computer vision makes UAV applications more and more popular. Computer vision tasks based on deep learning usually require a large amount of task-related data to train algorithms for specific tasks. Since the commonly used datasets are not designed for specific scenarios, in order to give UAVs stronger computer vision capabilities, large enough aerial image datasets are needed to be collected to meet the training requirements.
View Article and Find Full Text PDFThe data security of fog computing is a key problem for the Internet of things. Identity-based encryption (IBE) from lattices is extremely suitable for fog computing. It is able to not only simplify certificate management, but also resist quantum attacks.
View Article and Find Full Text PDFAccurate image segmentation results would show a great significance to computer vision-based manufacturing for complex helical surface. However, the image segmentation for complex helical surface is always a difficult problem because of the uneven gray distribution and non-homogeneous feature patterns of its images. Therefore, a multi-direction evolutionary segmentation model is constructed and a multi-population cooperative evolution algorithm is proposed to solve the new model.
View Article and Find Full Text PDFThe current baseline architectures in the field of the Internet of Things (IoT) strongly recommends the use of edge computing in the design of the solution applications instead of the traditional approach which solely uses the cloud/core for analysis and data storage. This research, therefore, focuses on formulating an edge-centric IoT architecture for smartphones which are very popular electronic devices that are capable of executing complex computational tasks at the network edge. A novel smartphone IoT architecture (SMIoT) is introduced that supports data capture and preprocessing, model (i.
View Article and Find Full Text PDFMedical service providers offer their patients high quality services in return for their trust and satisfaction. The Internet of Things (IoT) in healthcare provides different solutions to enhance the patient-physician experience. Clinical Decision-Support Systems are used to improve the quality of health services by increasing the diagnosis pace and accuracy.
View Article and Find Full Text PDF