Identification of key transcription factors from transcriptome data by correlating gene expression levels with transcription factor binding sites is important for transcriptome data analysis. In a typical scenario, we always set a threshold to filter the top ranked differentially expressed genes and top ranked transcription factor binding sites. However, correlation analysis of filtered data can often result in spurious correlations.
View Article and Find Full Text PDFBackground: Popular gene set enrichment analysis approaches assumed that genes in the gene set contributed to the statistics equally. However, the genes in the transcription factors (TFs) derived gene sets, or gene sets constructed by TF targets identified by the ChIP-Seq experiment, have a rank attribute, as each of these genes have been assigned with a p-value which indicates the true or false possibilities of the ownerships of the genes belong to the gene sets.
Objectives: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference.
miR-124 is a significantly up-regulated miRNA in peripheral blood collected from piglets infected with Salmonella Typhimurium, suggesting that it may play an important role in Salmonella pathogenesis. This study focused on the transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) isolated from miR-124 sponge and Salmonella Typhimurium-treated piglets, and trying to investigate the function of miR-124 in Salmonella infection. The transcriptome profiling analysis revealed that 2778 genes in miR-124 sponge + Salmonella Typhimurium treatment versus control, 2271 genes in Salmonella Typhimurium treatment versus control, and 1301 genes in miR-124 sponge + Salmonella Typhimurium versus Salmonella Typhimurium treatment, were differentially expressed, respectively (FDR < 0.
View Article and Find Full Text PDFBackground: Transcription factor (TF) regulates the transcription of DNA to messenger RNA by binding to upstream sequence motifs. Identifying the locations of known motifs in whole genomes is computationally intensive.
Methodology/principal Findings: This study presents a computational tool, named "Grit", for screening TF-binding sites (TFBS) by coordinating transcription factors to their promoter sequences in orthologous genes.
Neutrophils are the first barriers for resisting the invasion, proliferation, and damage caused by Salmonella Typhimurium. However, the mechanisms that control this resistance are not completely understood. In this study, we established an in vitro Salmonella infection model in porcine neutrophils, and analyzed the cellular transcriptome by deep sequencing and flow cytometry.
View Article and Find Full Text PDFBackground: Gene expression regulators identified in transcriptome profiling experiments may serve as ideal targets for genetic manipulations in farm animals.
Results: In this study, we developed a gene expression profile of 76,000+ unique transcripts for 224 porcine samples from 28 tissues collected from 32 animals using Super deepSAGE technology. Excellent sequencing depth was achieved for each multiplexed library, and replicated samples from the same tissues clustered together, demonstrating the high quality of Super deepSAGE data.
J Bioinform Comput Biol
October 2019
MicroRNAs are single-stranded noncoding RNAs known to down-regulate target genes at the protein or mRNA level. Computational prediction of targets is essential for elucidating the detailed functions of microRNA. However, prediction specificity and sensitivity of the existing algorithms still need to be improved to generate useful hypotheses for subsequent experimental testing.
View Article and Find Full Text PDFJ Bioinform Comput Biol
August 2019
Understanding how genes are expressed and regulated in different biological processes are fundamental and challenging issues. Considerable progress has been made in studying the relationship between the expression and regulation of human genes. However, it is difficult to use these resources productively to analyze gene expression data.
View Article and Find Full Text PDFBackground: MicroRNAs are involved in a broad range of biological processes and are known to be differentially expressed in response to bacterial pathogens.
Results: The present study identified microRNA responses in porcine peripheral blood after inoculation with the human foodborne pathogen Salmonella enterica serovar Typhimurium strain LT2. We compared the microRNA transcriptomes of the whole blood of pigs (Duroc × Landrace × Yorkshire) at 2-days post inoculation and before Salmonella infection.
Peripheral blood transcriptome is an important intermediate data source for investigating the mechanism of Salmonella invasion, proliferation, and transmission. We challenged 4-week old piglets with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 days post-inoculation (dpi) using deep sequencing. Regulator pathways were first predicted in silico and validated by wet-lab experiments.
View Article and Find Full Text PDFSalmonella infects many vertebrate species, and animals such as pigs can be colonized with Salmonella and become established carriers. Analyzing the roles of microRNA in intracellular proliferation is important for understanding the process of Salmonella infection. The objective of this study is to verify the regulation effect of miR-143 on ATP6V1A and its functions in the intracellular growth of Salmonella.
View Article and Find Full Text PDFDanofloxacin (DAN) is one of the Fluoroquinolone drugs (FQs) that has been widely used in the control and prevention of bacterial infectious disease in animal production. Most of the FQs have an obvious protective effect against lipopolysaccharide (LPS) induced Immune stress. However, the effect of DAN on the host immune system of animals remains unknown.
View Article and Find Full Text PDFmiRNAs are non-coding RNA molecules typically 18-22 nucleotides long that can suppress the expression of their target genes. Several laboratories have attempted to identify miRNAs from the pig that are involved in Salmonella infection. These bioinformatics strategies using the newly available genomic sequence are generally successful.
View Article and Find Full Text PDFSalmonella infects many vertebrate species, and pigs colonized with Salmonella are typically Salmonella carriers. Transcriptomic analysis of the response to Salmonella infection in whole blood has been reported for the pig. The objective of this study is to identify the important miRNAs involved in Salmonella infection using binding site enrichment analysis.
View Article and Find Full Text PDFThe robust and reliable detection of small microRNAs (miRNAs) is important to understand the functional significance of miRNAs. Several methods can be used to quantify miRNAs. Selectively quantifying mature miRNAs among miRNA precursors, pri-miRNAs, and other miRNA-like sequences is challenging because of the short length of miRNAs.
View Article and Find Full Text PDFThe regulatory relationship and connectivity among genes involved in myogenesis and hypertrophy of skeletal muscle in pigs still remain large challenges. Presentation of gene interactions is a potential way to understand the mechanisms of developmental events in skeletal muscle. In this study, genome-wide transcripts and miRNA profiling was determined for Landrace pigs at four time points using microarray chips.
View Article and Find Full Text PDFFoodborne salmonellosis costs the US $2.7 billion/year, including $100.0 million in annual losses to pork producers.
View Article and Find Full Text PDFBackground: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.
View Article and Find Full Text PDFWe evaluated differences in gene expression in pigs from the Porcine Reproductive and Respiratory Syndrome (PRRS) Host Genetics Consortium initiative showing a range of responses to PRRS virus infection. Pigs were allocated into four phenotypic groups according to their serum viral level and weight gain. RNA obtained from blood at 0, 4, 7, 11, 14, 28, and 42 days post-infection (DPI) was hybridized to the 70-mer 20K Pigoligoarray.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are small noncoding RNA molecules that serve as important post-transcriptional gene expression regulators by targeting messenger RNAs for post-transcriptional endonucleolytic cleavage or translational inhibition. miRNAs play important roles in many biological processes. Extensive high-throughput sequencing studies of miRNAs have been performed in several animal models.
View Article and Find Full Text PDFTranscriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease.
View Article and Find Full Text PDFBackground: Placental efficiency is strongly associated with litter size, fetal weight and prenatal mortality. Together with its rapid growth during late gestation, the Large White pig breed shows a significant increase in placental size and weight, but this does not occur in the highly prolific Chinese pig breeds. To understand the molecular basis of placental development during late gestation in Chinese indigenous and Western breeds with different placental efficiency, female placental samples were collected from six pregnant Erhualian gilts at gestation day 75 (E75) and day 90 (E90) and from six pregnant Large White gilts at gestation day 75 (L75) and day 90 (L90).
View Article and Find Full Text PDFMiRNAs (microRNAs) play critical roles in many important biological processes such as growth and development in mammals. In this study, we identified hundreds of porcine miRNA candidates through in silico prediction and analyzed their expression in developing skeletal muscle using microarray. Microarray screening using RNA samples prepared from a 33-day whole embryo and an extra embryo membrane validated 296 of the predicted candidates.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are recognized as one of the most important families of non-coding RNAs that serve as important sequence-specific post-transcriptional regulators of gene expression. Identification of miRNAs is an important requirement for understanding the mechanisms of post-transcriptional regulation. Hundreds of miRNAs have been identified by direct cloning and computational approaches in several species.
View Article and Find Full Text PDF