Spin-orbit coupling plays an important role in the spin Hall effect and topological insulators. Bose-Einstein condensates with spin-orbit coupling show remarkable quantum phase transition. In this work we control an exciton polariton condensate - a macroscopically coherent state of hybrid light and matter excitations - by virtue of the Rashba-Dresselhaus (RD) spin-orbit coupling.
View Article and Find Full Text PDFAlthough organic polariton condensation has been recently demonstrated, they only utilize the photon part of polaritons and ignore the excitonic contribution because the polariton-polariton and polariton-reservoir interactions are weak in organic microcavities owing to the absence of Coulomb exchange-interactions between Frenkel excitons. We demonstrate highly efficient and strongly polarization-dependent polariton condensates in a microcavity consisting of an H-aggregate organic single-crystalline microbelt sandwiched between two silver reflectors. Benefitting from the advantages of vibronic coupling in H-aggregates and heavy exciton-like polaritons, both macroscopic coherent polariton ground-state population and high-energy quantized-modes are observed.
View Article and Find Full Text PDF