There is a noticeable gap in the literature regarding research on halogen-substitution-regulated ferroelectric semiconductors featuring multiple phase transitions. Here, a new category of 1D perovskite ferroelectrics (DFP)SbX (DFP = 3,3-difluoropyrrolidium, X = I, Br, abbreviated as I-1 and Br-2) with twophase transitions (PTs) is reported. The first low-temperature PT is a mmmFmm2 ferroelectric PT, while the high-temperature PT is a counterintuitive inverse temperature symmetry-breaking PT.
View Article and Find Full Text PDFComprehensive optical imaging of the intensity, phase, and birefringent information of the biological sample is important because important physical or pathological changes always accompany the changes in multiple optical parameters. Current studies lack such a metric that can present the comprehensive optical property of the sample in one figure. In this paper, a polarization state synthesis tomography (PoST) method, which is based on the principle of polarization state coherent synthesis and demodulation, is proposed to achieve full-field tomographic imaging of the comprehensive information (i.
View Article and Find Full Text PDFTo achieve accurate selection and synchronous imaging of blood vessels and lymph, a speckle spectrum contrast method (SSC) based on spectral-domain optical coherence tomography (SD-OCT) is proposed in this Letter. In this method, the time-lapse optical coherence tomography (OCT) intensity signal is transformed to the Fourier frequency domain. By analyzing the frequency spectrum of the time-lapse OCT intensity signal, a parameter called SSC signal, which represents the ratio of different intervals of the high frequency to the low frequency, is utilized to extract and contrast different types of the vessels in the biological tissues.
View Article and Find Full Text PDFTo achieve non-invasive and high effective resolution microvascular imaging in vivo, photothermal modulation speckle optical coherence tomography (PMS-OCT) imaging technology is proposed in this Letter to enhance the speckle signal of the bloodstream for improving the imaging contrast and image quality in the deeper depth of Fourier domain optical coherence tomography (FD-OCT). The results of simulation experiments proved that this photothermal effect could disturb and enhance the speckle signals, because the photothermal effect could modulate the sample volume to expand and change the refractive index of tissues, leading to the change in the phase of interference light. Therefore, the speckle signal of the bloodstream will also change.
View Article and Find Full Text PDFBiomed Opt Express
October 2022
Lymphatic vessels are structurally similar to blood vessels, and the lymphatic fluid flowing within the lymphatic vessels is distributed throughout the body and plays a vital role in the human immune system. Visualization of the lymphatic vessels is clinically important in the diagnosis of tumor cell metastasis and related immune system diseases, but lymph is difficult to image due to its near-transparent nature and low flow rate. In this paper, we present a lymphography method based on time-autocorrelated optical coherence tomography.
View Article and Find Full Text PDFDespite the known influence of continuous cropping on soil microorganisms, little is known about the associated difference in the effects of continuous cropping on the community compositions of soil bacteria and fungi. Here, we assessed soil physicochemical property, as well as bacterial and fungal compositions across different years (Uncropped control, 1, 6, 11, 16, and 21 years) and in the watermelon system of a gravel mulch field in the Loess Plateau of China. Our results showed that long-term continuous cropping led to substantial shifts in soil bacterial and fungal compositions.
View Article and Find Full Text PDFArsenic exposure increases the risk of various bone disorders. For instance, chronic exposure to low level arsenic can cause bone resorption by promoting osteoclast differentiation. Osteoclast precursor cells produce hydrogen peroxide after low level arsenic exposure and then undergo differentiation, producing cells which break down bone matrix.
View Article and Find Full Text PDFElectron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm(2) in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.
View Article and Find Full Text PDFHuman α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase determines the fate of tryptophan metabolites in the kynurenine pathway by controlling the quinolinate levels for de novo nicotinamide adenine dinucleotide biosynthesis. The unstable nature of its substrate has made gaining insight into its reaction mechanism difficult. Our electron paramagnetic resonance (EPR) spectroscopic study on the Cu-substituted human enzyme suggests that the native substrate does not directly ligate to the metal ion.
View Article and Find Full Text PDFUnlabelled: Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites.
View Article and Find Full Text PDFThe previously reported crystal structures of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His)(3)(Asp)(OH(2)) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity.
View Article and Find Full Text PDFThis review examines the mechanisms propelling cofactor-independent, organic cofactor-dependent and metal-dependent decarboxylase chemistry. Decarboxylation, the removal of carbon dioxide from organic acids, is a fundamentally important reaction in biology. Numerous decarboxylase enzymes serve as key components of aerobic and anaerobic carbohydrate metabolism and amino acid conversion.
View Article and Find Full Text PDFThe Escherichia coli Hsp40 DnaJ uses its J-domain (Jd) to couple ATP hydrolysis and client protein capture in Hsp70 DnaK. Fusion of the Jd to peptide p5 (as in Jdp5) dramatically increases the apparent affinity of the p5 moiety for DnaK in the presence of ATP, and Jdp5 stimulates ATP hydrolysis in DnaK by several orders of magnitude. NMR experiments with [(15)N]Jdp5 demonstrated that the peptide tethers the Jd to the ATPase domain.
View Article and Find Full Text PDFAlpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) is a widespread enzyme found in many bacterial species and all currently sequenced eukaryotic organisms. It occupies a key position at the branching point of two metabolic pathways: the tryptophan to quinolinate pathway and the bacterial 2-nitrobenzoic acid degradation pathway. The activity of ACMSD determines whether the metabolites in both pathways are converted to quinolinic acid for NAD biosynthesis or to acetyl-CoA for the citric acid cycle.
View Article and Find Full Text PDFThe enzymatic activity of Pseudomonas fluorescens alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD) is critically dependent on a transition metal ion [Li, T., Walker, A. L.
View Article and Find Full Text PDF(S)-2-Hydroxylpropanylphosphonic acid epoxidase (HppE) is a novel type of mononuclear non-heme iron-dependent enzyme that catalyzes the O2 coupled, oxidative epoxide ring closure of HPP to form fosfomycin, which is a clinically useful antibiotic. Sequence alignment of the only two known HppE sequences led to the speculation that the conserved residues His138, Glu142, and His180 are the metal binding ligands of the Streptomyces wedmorensis enzyme. Substitution of these residues with alanine resulted in significant reduction of metal binding affinity, as indicated by EPR analysis of the enzyme-Fe(II)-substrate-nitrosyl complex and the spectral properties of the Cu(II)-reconstituted mutant proteins.
View Article and Find Full Text PDFThe enzyme alpha-amino-beta-carboxy-muconic-epsilon-semialdehyde decarboxylase (ACMSD) plays an important role in the biodegradation of 2-nitrobenzoic acid in microorganisms and in tryptophan catabolism in humans. We report that the overexpressed ACMSD enzyme from Pseudomonas fluorescens requires a divalent metal, such as Co(II), Fe(II), Cd(II), or Mn(II), for catalytic activity and that neither a redox reagent nor an organic cofactor is required for the catalytic function. The metal ions can be taken up in either cell or cell-free preparations for generating the active form of ACMSD.
View Article and Find Full Text PDF3-Hydroxyanthranilate-3,4-dioxygenase (HAD) is a non-heme Fe(II) dependent enzyme that catalyzes the oxidative ring-opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconic semialdehyde. The enzymatic product subsequently cyclizes to quinolinate, an intermediate in the biosynthesis of nicotinamide adenine dinucleotide. Quinolinate has also been implicated in important neurological disorders.
View Article and Find Full Text PDF