Publications by authors named "TingYun Kuang"

Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.

View Article and Find Full Text PDF

Many plans to establish human settlements on other planets focus on adapting crops to growth in controlled environments. However, these settlements will also require pioneer plants that can grow in the soils and harsh conditions found in extraterrestrial environments, such as those on Mars. Here, we report the extraordinary environmental resilience of , a desert moss that thrives in various extreme environments.

View Article and Find Full Text PDF

Diatoms, a group of prevalent marine algae, contribute significantly to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs), which exhibit oligomeric diversity across diatom species. Using mild clear native PAGE analysis of solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric, and pentameric FCPs in diatoms.

View Article and Find Full Text PDF

Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C.

View Article and Find Full Text PDF

is a unique cyanobacterium using chlorophyll (Chl ) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from at a 3.

View Article and Find Full Text PDF

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) /-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy.

View Article and Find Full Text PDF

Diatoms are dominant marine algae and contribute around a quarter of global primary productivity, the success of which is largely attributed to their photosynthetic capacity aided by specific fucoxanthin chlorophyll-binding proteins (FCPs) to enhance the blue-green light absorption under water. We purified a photosystem II (PSII)-FCPII supercomplex and a trimeric FCP from Cyclotella meneghiniana (Cm) and solved their structures by cryo-electron microscopy (cryo-EM). The structures reveal detailed organizations of monomeric, dimeric and trimeric FCP antennae, as well as distinct assemblies of Lhcx6_1 and dimeric FCPII-H in PSII core.

View Article and Find Full Text PDF

Diatoms rely on fucoxanthin chlorophyll -binding proteins (FCPs) for their great success in oceans, which have a great diversity in their pigment, protein compositions, and subunit organizations. We report a unique structure of photosystem II (PSII)-FCPII supercomplex from at 2.68-Å resolution by cryo-electron microscopy.

View Article and Find Full Text PDF

Fucoxanthin-chlorophyll proteins (FCPs) are a family of photosynthetic light-harvesting complex (LHC) proteins found in diatoms. They efficiently capture photons and regulate their functions, ensuring diatom survival in highly fluctuating light. FCPs are present in different oligomeric states , but functional differences among these FCP oligomers are not yet fully understood.

View Article and Find Full Text PDF

Light-harvesting complexes of photosystem II (LHCIIs) in green algae and plants are vital antenna apparatus for light harvesting, energy transfer, and photoprotection. Here we determined the structure of a siphonous-type LHCII trimer from the intertidal green alga Bryopsis corticulans by X-ray crystallography and cryo-electron microscopy (cryo-EM), and analyzed its functional properties by spectral analysis. The Bryopsis LHCII (Bry-LHCII) structures in both homotrimeric and heterotrimeric form show that green light-absorbing siphonaxanthin and siphonein occupied the sites of lutein and violaxanthin in plant LHCII, and two extra chlorophylls (Chls) b replaced Chls a.

View Article and Find Full Text PDF

Photosystem I (PSI) possesses a variable supramolecular organization among different photosynthetic organisms to adapt to different light environments. Mosses are evolutionary intermediates that diverged from aquatic green algae and evolved into land plants. The moss Physcomitrium patens (P.

View Article and Find Full Text PDF

Improving far-red light utilization could be an approach to increasing crop production under suboptimal conditions. In land plants, only a small part of far-red light can be used for photosynthesis, which is captured by the antenna proteins LHCAs of photosystem I (PSI) through the chlorophyll (Chl) pair 603 and 609. However, it is unknown how the energy level of Chls 603-609 is fine-tuned by the local protein environment .

View Article and Find Full Text PDF

The light-harvesting complex II of (-LHCII), a green alga, differs from that of spinach (-LHCII) in chlorophyll (Chl) and carotenoid (Car) compositions. We investigated ultrafast excitation dynamics of -LHCII with visible-to-near infrared time-resolved absorption spectroscopy. Absolute fluorescence quantum yield ( ) of LHCII and spectroelectrochemical (SEC) spectra of Chl and were measured to assist the spectral analysis.

View Article and Find Full Text PDF

The light-harvesting complex II of a green alga (-LHCII) is peculiar in that it contains siphonein and siphonaxathin as carotenoid (Car). Since the S state of siphonein and siphonaxathin lies substantially higher than the Q state of chlorophyll (Chl ), the Chl (Q)-to-Car(S) excitation energy transfer is unfeasible. To understand the photoprotective mechanism of algal photosynthesis, we investigated the influence of temperature on the excitation dynamics of -LHCII in trimeric and aggregated forms.

View Article and Find Full Text PDF

The photosynthetic reaction center complex (RCC) of green sulfur bacteria (GSB) consists of the membrane-imbedded RC core and the peripheric energy transmitting proteins called Fenna-Matthews-Olson (FMO). Functionally, FMO transfers the absorbed energy from a huge peripheral light-harvesting antenna named chlorosome to the RC core where charge separation occurs. In vivo, one RC was found to bind two FMOs, however, the intact structure of RCC as well as the energy transfer mechanism within RCC remain to be clarified.

View Article and Find Full Text PDF

Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from Thermosynechococcus vulcanus (T. vulcanus) showed that D1-R323, D1-N322, D1-D319 and D1-H304 are involved in one of these hydrogen-bonding networks located in the interfaces between the D1, CP43 and PsbV subunits.

View Article and Find Full Text PDF

The chloroplast NADH dehydrogenase-like (NDH) complex is composed of at least 29 subunits and has an important role in mediating photosystem I (PSI) cyclic electron transport (CET). The NDH complex associates with PSI to form the PSI-NDH supercomplex and fulfil its function. Here, we report cryo-electron microscopy structures of a PSI-NDH supercomplex from barley (Hordeum vulgare).

View Article and Find Full Text PDF

In vascular plants, bryophytes and algae, the photosynthetic light reaction takes place in the thylakoid membrane where two transmembrane supercomplexes PSII and PSI work together with cytochrome b 6 f and ATP synthase to harvest the light energy and produce ATP and NADPH. Vascular plant PSI is a 600-kDa protein-pigment supercomplex, the core complex of which is partly surrounded by peripheral light-harvesting complex I (LHCI) that captures sunlight and transfers the excitation energy to the core to be used for charge separation. PSI is unique mainly in absorption of longer-wavelengths than PSII, fast excitation energy transfer including uphill energy transfer, and an extremely high quantum efficiency.

View Article and Find Full Text PDF

Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyses light-induced water oxidation, leading to the conversion of light energy into chemical energy and the release of dioxygen. We analysed the structures of two Psb28-bound PSII intermediates, Psb28-RC47 and Psb28-PSII, purified from a psbV-deletion strain of the thermophilic cyanobacterium Thermosynechococcus vulcanus, using cryo-electron microscopy. Both Psb28-RC47 and Psb28-PSII bind one Psb28, one Tsl0063 and an unknown subunit.

View Article and Find Full Text PDF

Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A , A , and three Fe S clusters, F , F , and F . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.

View Article and Find Full Text PDF

Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.

View Article and Find Full Text PDF

Photosystem I (PSI) and II (PSII) balance their light energy distribution absorbed by their light-harvesting complexes (LHCs) through state transition to maintain the maximum photosynthetic performance and to avoid photodamage. In state 2, a part of LHCII moves to PSI, forming a PSI-LHCI-LHCII supercomplex. The green alga Chlamydomonas reinhardtii exhibits state transition to a far larger extent than higher plants.

View Article and Find Full Text PDF

Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI-LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.

View Article and Find Full Text PDF

Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyzes light-driven water oxidation, leading to the conversion of light energy into chemical energy and the release of molecular oxygen. Psb27 is a small thylakoid lumen-localized protein known to serve as an assembly factor for the biogenesis and repair of the PSII complex. The exact location and binding fashion of Psb27 in the intermediate PSII remain elusive.

View Article and Find Full Text PDF

The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from The GsbRC binds considerably fewer (bacterio)chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II.

View Article and Find Full Text PDF